16,165 research outputs found

    Gauge unification in noncommutative geometry

    Full text link
    Gauge unification is widely considered to be a desirable feature for extensions of the standard model. Unfortunately the standard model itself does not exhibit a unification of its running gauge couplings but it is required by grand unified theories as well as the noncommutative version of the standard model [2]. We will consider here the extension of the noncommutative standard model by vector doublets as proposed in [6]. Two consequences of this modification are: 1. the relations of the coupling constants at unification energy are altered with respect to the well known relation from grand unified theories. 2. The extended model allows for unification of the gauge couplings at ~10^(13) GeV

    Almost-Commutative Geometries Beyond the Standard Model III: Vector Doublets

    Full text link
    We will present a new extension of the standard model of particle physics in its almostcommutative formulation. This extension has as its basis the algebra of the standard model with four summands [11], and enlarges only the particle content by an arbitrary number of generations of left-right symmetric doublets which couple vectorially to the U(1)_YxSU(2)_w subgroup of the standard model. As in the model presented in [8], which introduced particles with a new colour, grand unification is no longer required by the spectral action. The new model may also possess a candidate for dark matter in the hundred TeV mass range with neutrino-like cross section

    Almost-Commutative Geometries Beyond the Standard Model II: New Colours

    Full text link
    We will present an extension of the standard model of particle physics in its almost-commutative formulation. This extension is guided by the minimal approach to almost-commutative geometries employed in [13], although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fermions of opposite electro-magnetic charge which may possess a new colour like gauge group. As a new phenomenon, grand unification is no longer required by the spectral action.Comment: Revised version for publication in J.Phys.A with corrected Higgs masse

    The Inverse Seesaw Mechanism in Noncommutative Geometry

    Full text link
    In this publication we will implement the inverse Seesaw mechanism into the noncommutative framework on the basis of the AC-extension of the Standard Model. The main difference to the classical AC model is the chiral nature of the AC fermions with respect to a U(1) extension of the Standard Model gauge group. It is this extension which allows us to couple the right-handed neutrinos via a gauge invariant mass term to left-handed A-particles. The natural scale of these gauge invariant masses is of the order of 10^17 GeV while the Dirac masses of the neutrino and the AC-particles are generated dynamically and are therefore much smaller (ca. 1 GeV to 10^6 GeV). From this configuration a working inverse Seesaw mechanism for the neutrinos is obtained

    Almost-Commutative Geometries Beyond the Standard Model

    Full text link
    In [7-9] and [10] the conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this publication a counter example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model of particle physics and two new fermions of opposite electro-magnetic charge. This is the second Yang-Mills-Higgs model within noncommutative geometry, after the standard model, which could be compatible with experiments. Combined to a hydrogen-like composite particle these new particles provide a novel dark matter candidate

    Studying the Variation of the Fine Structure Constant Using Emission Line Multiplets

    Full text link
    As an extension of the method by Bahcall et al. (2004) to investigate the time dependence of the fine structure constant, we describe an approach based on new observations of forbidden line multiplets from different ionic species. We obtain optical spectra of fine structure transitions in [Ne III], [Ne V], [O III], [OI], and [SII] multiplets from a sample of 14 Seyfert 1.5 galaxies in the low-z range 0.035 < z < 0.281. Each source and each multiplet is independently analyzed to ascertain possible errors. Averaging over our sample, we obtain a conservative value alpha^2(t)/\alpha^2(0) = 1.0030+-0.0014. However, our sample is limited in size and our fitting technique simplistic as we primarily intend to illustrate the scope and strengths of emission line studies of the time variation of the fine structure constant. The approach can be further extended and generalized to a "many-multiplet emission line method" analogous in principle to the corresponding method using absorption lines. With that aim, we note that the theoretical limits on emission line ratios of selected ions are precisely known, and provide well constrained selection criteria. We also discuss several other forbidden and allowed lines that may constitute the basis for a more rigorous study using high-resolution instruments on the next generation of 8 m class telescopes.Comment: 20 pages, 4 figures, sumbitted to A

    Influence of coating on the thermal resistance of a Ni-Based superalloy

    Get PDF
    In this paper, the influence of M-CrAlY polycrystalline coating on the thermal fatigue behavior of a Nickel-base superalloy has been investigated. A special device using a rotating bending machine and two thermal sources has been used to perform thermo-mechanical tests. The two thermal sources have been set to obtain temperature variations between 750 and 1120 °C in the central part of the specimens, with a frequency of 0.1 Hz. The results showed a deleterious effect of the coating on the fatigue resistance. Numerical simulations have been carried out on SAMCEF to determine the thermo-mechanical field of the so-tested specimens. Calculated thermo-mechanical cycles of critical sites are associated with microstructure evolution and damage by cracking observed on the specimens. Damage mechanisms related to the presence of coating are discussed

    The signature of the tropospheric gravity wave background in observed mesoscale motion

    Get PDF
    How convection couples to mesoscale vertical motion and what determines these motions is poorly understood. This study diagnoses profiles of area-averaged mesoscale divergence from measurements of horizontal winds collected by an extensive upper-air sounding network of a recent campaign over the western tropical North Atlantic, the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) campaign. Observed area-averaged divergence amplitudes scale approximately inversely with area equivalent radius. This functional dependence is also confirmed in reanalysis data and a global freely-evolving simulation run at 2.5 km horizontal resolution. Based on the numerical data it is demonstrated that the energy spectra of inertia gravity waves can explain the scaling of divergence amplitudes with area. At individual times, however, few waves can dominate the region. Nearly monochromatic tropospheric waves are diagnosed in the soundings by means of an optimized hodograph analysis. For one day, results suggest that an individual wave directly modulated the satellite-observed cloud pattern. However, because such immediate wave impacts are rare, the systematic modulation of vertical motion due to inertia-gravity waves may be more relevant as a convection-modulating factor. The analytic relationship between energy spectra and divergence amplitudes proposed in this article, if confirmed by future studies, could be used to design better external forcing methods for regional models

    Identification of human papillomavirus DNA in cutaneous lesions of Cowden syndrome

    Get PDF
    Background: Cowden syndrome (CS) or multiple hamartoma syndrome is a cancer-associated genodermatosis inherited in an autosomal dominant pattern. One of the diagnostic criteria is facial papules which are felt to be trichilemmomas, benign hair follicle tumors, which some consider to be induced by human papillomavirus (HPV). Objective: To search for HPV in skin tumors, especially trichilemmomas, from patients with CS. Methods: Skin lesions from patients with CS were classified histologically. Each tumor was then analyzed for HPV DNA by polymerase chain reaction with different primer sets; positive amplicons were typed by direct sequencing. Results: Twenty-nine biopsies from 7 patients with CS were investigated. Only 2 of 29 tumors clinically suspected of being trichilemmomas were confirmed histologically. In addition, 3 sclerotic fibromas, also typical of CS, were found, as well as 1 sebaceous hyperplasia. The other 23 lesions showed histological features of HPV-induced tumors in various stages of development. HPV DNA was found in 19 of 29 cutaneous lesions. Tumors without any histological signs of HPV induction were negative for HPV DNA. Two tumors which were histologically classified as common warts contained HPV types 27 and 28. All the 17 other HPV types belong to the group of epidermodysplasia-verruciformis-associated types. Conclusions: The majority of cutaneous lesions in CS contain HPV DNA. They may have a variety of histological patterns. Trichilemmomas are not clinically distinctive and can be difficult to identify in CS patients. Copyright (C) 2003 S. Karger AG, Basel
    • …
    corecore