17,330 research outputs found

    Search for star clusters close to the Galactic plane with DENIS

    Get PDF
    An automated search for star clusters close to the Galactic plane (|b| < 5 deg) was carried out on the Point Source Catalogue of the DENIS survey. 44% of the Galactic plane have been observed and calibrated. The method allowed to retrieve 22 known star clusters and to identify two new ones, not published yet although previously presented in the 2MASS web site as embedded clusters in HII regions. Extinction in the field and in front of the clusters are estimated using a model of population synthesis. We present the method and give the properties of these clusters.Comment: 5 pages, 3 figures, accepted for publication in A&

    Quasi integral of motion for axisymmetric potentials

    Full text link
    We present an estimate of the third integral of motion for axisymmetric three-dimensional potentials. This estimate is based on a Staeckel approximation and is explicitly written as a function of the potential. We tested this scheme for the Besancon Galactic model and two other disc-halo models and find that orbits of disc stars have an accurately conserved third quasi integral. The accuracy ranges from of 0.1% to 1% for heights varying from z = 0~kpc to z= 6 kpc and Galactocentric radii R from 5 to 15kpc. We also tested the usefulness of this quasi integral in analytic distribution functions of disc stellar populations: we show that the distribution function remains approximately stationary and that it allows to recover the potential and forces by applying Jeans equations to its moments.Comment: 9 pages, 9 figures, accepted for publication in Astron. and Astrophy

    The microlensing rate and distribution of free-floating planets towards the Galactic bulge

    Full text link
    Ground-based optical microlensing surveys have provided tantalising, if inconclusive, evidence for a significant population of free-floating planets (FFPs). Both ground and space-based facilities are being used and developed which will be able to probe the distrubution of FFPs with much better sensitivity. It is vital also to develop a high-precision microlensing simulation framework to evaluate the completeness of such surveys. We present the first signal-to-noise limited calculations of the FFP microlensing rate using the Besancon Galactic model. The microlensing distribution towards the Galactic centre is simulated for wide-area ground-based optical surveys such as OGLE or MOA, a wide-area ground-based near-IR survey, and a targeted space-based near-IR survey which could be undertaken with Euclid or WFIRST. We present a calculation framework for the computation of the optical and near-infrared microlensing rate and optical depth for simulated stellar catalogues which are signal-to-noise limited, and take account of extinction, unresolved stellar background light and finite source size effects, which can be significant for FFPs. We find that the global ground-based I-band yield over a central 200 deg^2 region covering the Galactic centre ranges from 20 Earth-mass FFPs year^-1 up to 3,500 year^-1 for Jupiter FFPs in the limit of 100% detection efficiency, and almost an order of magnitude larger for a K-band survey. For ground-based surveys we find that the inclusion of finite source and the unresolved background reveals a mass-dependent variation in the spatial distribution of FFPs. For a space-based H-band covering 2 deg^2, the yield depends on the target field but maximizes close to the Galactic centre with around 76 Earth through to 1,700 Jupiter FFPs year^-1. For near-IR space-based surveys the spatial distribution of FFPs is found to be largely insensitive to the FFP mass scale.Comment: 14 pages, submitted to A&A and accepte

    The Galactic bulge as seen in optical surveys

    Full text link
    The bulge is a region of the Galaxy of tremendous interest for understanding galaxy formation. However measuring photometry and kinematics in it raises several inherent issues, such as severe crowding and high extinction in the visible. Using the Besancon Galaxy model and a 3D extinction map, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars with Gaia. We also present an ongoing analysis of the bulge using the Canada-France-Hawaii Telescope.Comment: In SF2A-2008: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysic

    The visibility of the Galactic bulge in optical surveys. Application to the Gaia mission

    Full text link
    The bulge is a region of the Galaxy which is of tremendous interest for understanding Galaxy formation. However, measuring photometry and kinematics in it raises several inherent issues, like high extinction in the visible and severe crowding. Here we attempt to estimate the problem of the visibility of the bulge at optical wavelengths, where large CCD mosaics allow to easily cover wide regions from the ground, and where future astrometric missions are planned. Assuming the Besancon Galaxy model and high resolution extinction maps, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars. The method is applied to three Gaia instruments, the BBP and MBP photometers, and the RVS spectrograph. We conclude that, while in the BBP most of the bulge will be accessible, in the MBP there will be a small but significant number of regions where bulge stars will be detected and accurately measured in crowded fields. Assuming that the RVS spectra may be extracted in moderately crowded fields, the bulge will be accessible in most regions apart from the strongly absorbed inner plane regions, because of high extinction, and in low extinction windows like the Baades's window where the crowding is too severe.Comment: 11 pages, 9 figures, accepted for publication in A&A, latex using A&A macro

    Crystal structure, thermodynamics, magnetics and disorder properties of Be-Fe-Al intermetallics

    Full text link
    The elastic and magnetic properties, thermodynamical stability, deviation from stoichiometry and order/disorder transformations of phases that are relevant to Be alloys were investigated using density functional theory simulations coupled with phonon density of states calculations to capture temperature effects. A novel structure and composition were identified for the Be-Fe binary {\epsilon} phase. In absence of Al, FeBe_5 is predicted to form at equilibrium above ~ 1250 K, while the {\epsilon} phase is stable only below ~ 1650 K, and FeBe_2 is stable at all temperatures below melting. Small additions of Al are found to stabilise FeBe_5 over FeBe_2 and {\epsilon}, while at high Al content, AlFeBe_4 is predicted to form. Deviations from stoichiometric compositions are also considered and found to be important in the case of FeBe_5 and {\epsilon}. The propensity for disordered vs ordered structures is also important for AlFeBe_4 (which exhibits complete Al-Fe disordered at all temperatures) and FeBe_5 (which exhibits an order-disorder transition at ~ 950 K).Comment: 14 pages, 10 figures, accepted for publication in J. Alloy Compd. on 14 March 201
    • …
    corecore