625 research outputs found
Thermoelectric properties of Co, Ir, and Os-Doped FeSi Alloys: Evidence for Strong Electron-Phonon Coupling
The effects of various transition metal dopants on the electrical and thermal
transport properties of Fe1-xMxSi alloys (M= Co, Ir, Os) are reported. The
maximum thermoelectric figure of merit ZTmax is improved from 0.007 at 60 K for
pure FeSi to ZT = 0.08 at 100 K for 4% Ir doping. A comparison of the thermal
conductivity data among Os, Ir and Co doped alloys indicates strong
electron-phonon coupling in this compound. Because of this interaction, the
common approximation of dividing the total thermal conductivity into
independent electronic and lattice components ({\kappa}Total =
{\kappa}electronic + {\kappa}lattice) fails for these alloys. The effects of
grain size on thermoelectric properties of Fe0.96Ir0.04Si alloys are also
reported. The thermal conductivity can be lowered by about 50% with little or
no effect on the electrical resistivity or Seebeck coefficient. This results in
ZTmax = 0.125 at 100 K, still about a factor of five too low for solid-state
refrigeration applications
The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects
We measure the Casimir force between a gold sphere and a silicon plate with
nanoscale, rectangular corrugations with depth comparable to the separation
between the surfaces. In the proximity force approximation (PFA), both the top
and bottom surfaces of the corrugations contribute to the force, leading to a
distance dependence that is distinct from a flat surface. The measured Casimir
force is found to deviate from the PFA by up to 15%, in good agreement with
calculations based on scattering theory that includes both geometry effects and
the optical properties of the material
Towards the grain boundary phonon scattering problem: an evidence for a low-temperature crossover
The problem of phonon scattering by grain boundaries is studied within the
wedge disclination dipole (WDD) model. It is shown that a specific q-dependence
of the phonon mean free path for biaxial WDD results in a low-temperature
crossover of the thermal conductivity, . The obtained results allow to
explain the experimentally observed deviation of from a
dependence below in and .Comment: 4 pages, 2 figures, submitted to J.Phys.:Condens.Matte
A novel, aerosol-nanocrystal floating-gate device for non-volatile memory applications
This paper describes the fabrication, and structural and electrical characterization of a new, aerosol-nanocrystal floating-gate FET, aimed at non-volatile memory (NVM) applications. This aerosol-nanocrystal NVM device features program/erase characteristics comparable to conventional stacked gate NVM devices, excellent endurance (>l0^5 P/E cycles), and long-term non-volatility in spite of a thin bottom oxide (55-60Ă…). In addition, a very simple fabrication process makes this aerosol-nanocrystal NVM device a potential candidate for low cost NVM applications
Heat transport in silicon from first principles calculations
Using harmonic and anharmonic force constants extracted from
density-functional calculations within a supercell, we have developed a
relatively simple but general method to compute thermodynamic and thermal
properties of any crystal. First, from the harmonic, cubic, and quartic force
constants we construct a force field for molecular dynamics (MD). It is exact
in the limit of small atomic displacements and thus does not suffer from
inaccuracies inherent in semi-empirical potentials such as Stillinger-Weber's.
By using the Green-Kubo (GK) formula and molecular dynamics simulations, we
extract the bulk thermal conductivity. This method is accurate at high
temperatures where three-phonon processes need to be included to higher orders,
but may suffer from size scaling issues. Next, we use perturbation theory
(Fermi Golden rule) to extract the phonon lifetimes and compute the thermal
conductivity from the relaxation time approximation. This method is
valid at most temperatures, but will overestimate at very high
temperatures, where higher order processes neglected in our calculations, also
contribute. As a test, these methods are applied to bulk crystalline silicon,
and the results are compared and differences discussed in more detail. The
presented methodology paves the way for a systematic approach to model heat
transport in solids using multiscale modeling, in which the relaxation time due
to anharmonic 3-phonon processes is calculated quantitatively, in addition to
the usual harmonic properties such as phonon frequencies and group velocities.
It also allows the construction of accurate bulk interatomic potentials
database.Comment: appear in PRB (2011
Olfactory and Gustatory Dysfunction in Patients With Autoimmune Encephalitis
Objective: To test the hypothesis that olfactory (OF) and gustatory function (GF) is disturbed in patients with autoimmune encephalitides (AE).
Methods: The orthonasal OF was tested in 32 patients with AE and 32 age- and sex-matched healthy controls (HC) with the standardized Threshold Discrimination Identification (TDI) score. This validated olfactory testing method yields individual scores for olfactory threshold (T), odor discrimination (D), and identification (I), along with a composite TDI score. The GF was determined by the Taste Strip Test (TST).
Results: Overall, 24/32 (75%) of patients with AE, but none of 32 HC (p < 0.001) had olfactory dysfunction in TDI testing. The results of the threshold, discrimination and identification subtests were significantly reduced in patients with AE compared to HC (all p < 0.001). Assessed by TST, 5/19 (26.3%) of patients with AE, but none of 19 HC presented a significant limitation in GF (p < 0.001). The TDI score was correlated with the subjective estimation of the olfactory capacity on a visual analog scale (VAS; r(s) = 0.475, p = 0.008). Neither age, sex, modified Rankin Scale nor disease duration were associated with the composite TDI score.
Conclusions: This is the first study investigating OF and GF in AE patients. According to unblinded assessment, patients with AE have a reduced olfactory and gustatory capacity compared to HC, suggesting that olfactory and gustatory dysfunction are hitherto unrecognized symptoms in AE. Further studies with larger number of AE patients would be of interest to verify our results
The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica
Spectroscopic results on low frequency excitations of densified silica are
presented and related to characteristic thermal properties of glasses. The end
of the longitudinal acoustic branch is marked by a rapid increase of the
Brillouin linewidth with the scattering vector. This rapid growth saturates at
a crossover frequency Omega_co which nearly coincides with the center of the
boson peak. The latter is clearly due to additional optic-like excitations
related to nearly rigid SiO_4 librations as indicated by hyper-Raman
scattering. Whether the onset of strong scattering is best described by
hybridization of acoustic modes with these librations, by their elastic
scattering (Rayleigh scattering) on the local excitations, or by soft
potentials remains to be settled.Comment: 14 pages, 6 figures, to be published in a special issue of J. Phys.
Condens. Matte
Master Equation for the Motion of a Polarizable Particle in a Multimode Cavity
We derive a master equation for the motion of a polarizable particle weakly
interacting with one or several strongly pumped cavity modes. We focus here on
massive particles with complex internal structure such as large molecules and
clusters, for which we assume a linear scalar polarizability mediating the
particle-light interaction. The predicted friction and diffusion coefficients
are in good agreement with former semiclassical calculations for atoms and
small molecules in weakly pumped cavities, while the current rigorous quantum
treatment and numerical assessment sheds a light on the feasibility of
experiments that aim at optically manipulating beams of massive molecules with
multimode cavities.Comment: 30 pages, 5 figure
Elastic Spin Relaxation Processes in Semiconductor Quantum Dots
Electron spin decoherence caused by elastic spin-phonon processes is
investigated comprehensively in a zero-dimensional environment. Specifically, a
theoretical treatment is developed for the processes associated with the
fluctuations in the phonon potential as well as in the electron procession
frequency through the spin-orbit and hyperfine interactions in the
semiconductor quantum dots. The analysis identifies the conditions (magnetic
field, temperature, etc.) in which the elastic spin-phonon processes can
dominate over the inelastic counterparts with the electron spin-flip
transitions. Particularly, the calculation results illustrate the potential
significance of an elastic decoherence mechanism originating from the
intervalley transitions in semiconductor quantum dots with multiple equivalent
energy minima (e.g., the X valleys in SiGe). The role of lattice anharmonicity
and phonon decay in spin relaxation is also examined along with that of the
local effective field fluctuations caused by the stochastic electronic
transitions between the orbital states. Numerical estimations are provided for
typical GaAs and Si-based quantum dots.Comment: 57 pages, 14 figure
Low thermal conductivity of the layered oxide (Na,Ca)Co_2O_4: Another example of a phonon glass and an electron crystal
The thermal conductivity of polycrystalline samples of (Na,Ca)Co_2O_4 is
found to be unusually low, 20 mW/cmK at 280 K. On the assumption of the
Wiedemann-Franz law, the lattice thermal conductivity is estimated to be 18
mW/cmK at 280 K, and it does not change appreciably with the substitution of Ca
for Na. A quantitative analysis has revealed that the phonon mean free path is
comparable with the lattice parameters, where the point-defect scattering plays
an important role. Electronically the same samples show a metallic conduction
down to 4.2 K, which strongly suggests that NaCo_2O_4 exhibits a glass-like
poor thermal conduction together with a metal-like good electrical conduction.
The present study further suggests that a strongly correlated system with
layered structure can act as a material of a phonon glass and an electron
crystal.Comment: 5 pages 3 figures, to be published in Phys. Rev.
- …