72 research outputs found

    Selfish Network Creation with Non-Uniform Edge Cost

    Full text link
    Network creation games investigate complex networks from a game-theoretic point of view. Based on the original model by Fabrikant et al. [PODC'03] many variants have been introduced. However, almost all versions have the drawback that edges are treated uniformly, i.e. every edge has the same cost and that this common parameter heavily influences the outcomes and the analysis of these games. We propose and analyze simple and natural parameter-free network creation games with non-uniform edge cost. Our models are inspired by social networks where the cost of forming a link is proportional to the popularity of the targeted node. Besides results on the complexity of computing a best response and on various properties of the sequential versions, we show that the most general version of our model has constant Price of Anarchy. To the best of our knowledge, this is the first proof of a constant Price of Anarchy for any network creation game.Comment: To appear at SAGT'1

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DETNC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits

    Space Complexity of the Directed Reachability Problem over Surface-Embedded Graphs

    Full text link
    The graph reachability problem, the computational task of deciding whether there is a path between two given nodes in a graph is the canonical problem for studying space bounded computations. Three central open questions regarding the space complexity of the reachabil-ity problem over directed graphs are: (1) improving Savitch’s O(log2 n) space bound, (2) designing a polynomial-time algorithm with O(n1−) space bound, and (3) designing an unambiguous non-deterministic log-space (UL) algorithm. These are well-known open questions in complex-ity theory, and solving any one of them will be a major breakthrough. We will discuss some of the recent progress reported on these questions for certain subclasses of surface-embedded directed graphs

    Compilation of parameterized seismogenic sources in Iberia for the SHARE European-scale seismic source model.

    Get PDF
    Abstract: SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded project (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are compiling a fully-parameterized active fault database for Iberia and the nearby offshore region. The principal goal of this initiative is for fault sources in the Iberian region to be represented in SHARE and incorporated into the source model that will be used to produce seismic hazard maps at the European scale. The SHARE project relies heavily on input from many regional experts throughout the Euro-Mediterranean region. At the SHARE regional meeting for Iberia, the 2010 Working Group on Iberian Seismogenic Sources (WGISS) was established; these researchers are contributing to this large effort by providing their data to the Iberian regional integrators in a standardized format. The development of the SHARE Iberian active fault database is occurring in parallel with IBERFAULT, another ongoing effort to compile a database of active faults in the Iberian region. The SHARE Iberian active fault database synthesizes a wide range of geological and geophysical observations on active seismogenic sources, and incorporates existing compilations (e.g., Cabral, 1995; Silva et al., 2008), original data contributed directly from researchers, data compiled from the literature, parameters estimated using empirical and analytical relationships, and, where necessary, parameters derived using expert judgment. The Iberian seismogenic source model derived for SHARE will be the first regional-scale source model for Iberia that includes fault data and follows an internationally standardized approach (Basili et al., 2008; 2009). This model can be used in both seismic hazard and risk analyses and will be appropriate for use in Iberian- and European-scale assessments

    Comparative 16S rRNA gene sequencing study of subgingival microbiota of healthy subjects and patients with periodontitis from four different countries.

    Full text link
    peer reviewed[en] AIM: To investigate the differences between the subgingival microbiota of healthy subjects (HS) and periodontitis patients (PP) from four different countries through a metagenomic approach. MATERIALS AND METHODS: Subgingival samples were obtained from subjects from four different countries. Microbial composition was analysed through high-throughput sequencing of the V3-V4 region of the 16S rRNA gene. The country of origin, diagnosis and clinical and demographic variables of the subjects were used to analyse the microbial profiles. RESULTS: In total, 506 subgingival samples were analysed: 196 from HS and 310 from patients with periodontitis. Differences in richness, diversity and microbial composition were observed when comparing samples pertaining to different countries of origin and different subject diagnoses. Clinical variables, such as bleeding on probing, did not significantly affect the bacterial composition of the samples. A highly conserved core of microbiota associated with periodontitis was detected, while the microbiota associated with periodontally HS was much more diverse. CONCLUSIONS: Periodontal diagnosis of the subjects was the main variable explaining the composition of the microbiota in the subgingival niche. Nevertheless, the country of origin also had a significant impact on the microbiota and is therefore an important factor to consider when describing subgingival bacterial communities
    corecore