11,623,166 research outputs found

    Concentric tubes cold-bonded by drawing and internal expansion

    Get PDF
    Metal tubes bonded together without heat application or brazing materials retain strength at elevated temperatures, and when subjected to constant or cyclic temperature gradients. Combination drawing and expansion process produces residual tangential tensile stress in the outer tube and tangential compressive stress in the inner tube

    Similarity solutions of Reaction-Diffusion equation with space- and time-dependent diffusion and reaction terms

    Full text link
    We consider solvability of the generalized reaction-diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction-diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction-diffusion systems. Several representative examples of exactly solvable reaction-diffusion equations are presented.Comment: 11 pages, 4 figure

    Center motions of nonoverlapping condensates coupled by long-range dipolar interaction in bilayer and multilayer stacks

    Full text link
    We investigate the effect of anisotropic and long-range dipole-dipole interaction (DDI) on the center motions of nonoverlapping Bose-Einstein condensates (BEC) in bilayer and multilayer stacks. In the bilayer, it is shown analytically that while DDI plays no role in the in-phase modes of center motions of condensates, out-of-phase mode frequency (ωo\omega_o) depends crucially on the strength of DDI (ada_d). At the small-ada_d limit, ωo2(ad)ωo2(0)ad\omega_o^2(a_d)-\omega_o^2(0)\propto a_d. In the multilayer stack, transverse modes associated with center motions of coupled condensates are found to be optical phonon like. At the long-wavelength limit, phonon velocity is proportional to ad\sqrt a_d.Comment: 7 pages, 5 figure

    Asymptotic States and the Definition of the S-matrix in Quantum Gravity

    Full text link
    Viewing gravitational energy-momentum as equal by observation, but different in essence from inertial energy-momentum naturally leads to the gauge theory of volume-preserving diffeormorphisms of an inner Minkowski space. The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit - mapping the gravitational energy-momentum onto the inertial energy-momentum to account for their observed equality - is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeormorphisms. The so defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy-momentum. Finally generalized LSZ reduction formulae for scalar, Dirac and gauge fields are established which allow to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in an earlier paper [8] any transition amplitude can in principle be computed to any order in perturbative quantum gravity.Comment: 35 page

    Seating tool for preparing molded-plug terminations on FCC

    Get PDF
    Hand-operated tool positions and seats window piece and conductor spacer onto conductors of two stripped cables during process of terminating cables with molded plug. Tool accommodates cables up to 3 in. wide and is used in conjunction with folding tools
    corecore