3 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Control de motores sin escobillas (BLDC) y con sensores usando el microcontrolador ARM Cortex3 con 32 bits de LPCXpresso, mediante comandos enviados desde tarjeta Butterfly (con microcontrolador Atmega169)

    No full text
    El presente documento corresponde al seminario de graduación de “Microcontroladores Avanzados”, el objetivo del proyecto es crear un prototipo para el “Control de motores BLDC con sensores usando el microcontrolador ARM Cortex-M3 de la tarjeta LPCXpresso 1769”de NXP Semiconductors dada a sus excelentes características y la tarjeta Butterfly con microcontrolador ATMega169 para él envió de comandos hacia la tarjeta LPCXpresso 1769 para el control del motor BLCD, también se hace uso de la tarjeta LPCXpresso Motor Control Kit como driver para el motor BLCD. Se describe de forma general el funcionamiento del proyecto, como también los antecedentes, motivación, identificación del problema, objetivos principales, limitaciones, descripción de sus partes, etc.GuayaquilIngeniero en Electrónica y Telecomunicaciones / Ingeniero en Electrónica y Automatización Industria

    Control de motores sin escobillas (bldc) y con sensores usando el microcontrolador arm cortex3 con 32 bits de lpcxpresso, mediante comandos enviados desde tarjeta butterfly (con microcontrolador atmega169)

    Get PDF
    El objetivo de este proyecto es crear un prototipo para el control de motores BLDC con sensores. Para esto se utilizarán la tarjeta LPCXpresso LPC1769, LPCXpresso Motor Control Kit y de la tarjeta Butterfly, así como también las herramientas de software LPCXpresso v4.1.5_219 para la programación de la tarjeta LPCXpresso 1769 y AVR STUDIO 4 para la tarjeta Butterfly. De esta manera, se cumplió el objetivo propuesto, identificando las entradas y salidas de las LPC logrando el control del motor BLDC con sensores. Para controlar la velocidad del motor BLDC usamos una señal PWM con un duty cycle que no excede el 90% y para ello se utilizaron los TIMER0 y TIMER1 en modo de 32 bits de la LPC1114. El control de velocidad para motores BLCD con sensores efecto Hall utilizados en este proyecto muestra la fácil implementación y aplicación para el uso didáctico, y experimental donde se puede comprobar el funcionamiento de sus etapas, tal como la de control y de potencia del motor.The objective of this project is to create a prototype for BLDC motor control with sensors. For this purpose, we use the LPCXpresso LPC1769 board, LPCXpresso Motor Control Kit and Butterfly board, as well as software tools LPCXpresso v4.1.5_219 for programming LPCXpresso 1769 board and AVR STUDIO 4 for Butterfly board. In this way, the objective of this project was fulfilled, identifying inputs and outputs of the LPC making BLDC motor control with sensors. To control the BLDC motor speed, we use a PWM signal with a duty cycle not exceeding 90%, and for this we used TIMER0 and TIMER1 in 32-bit mode of LPC1114. The motor speed control BLCD with Hall effect sensors that were used in this project show the easy deployment and implementation for educational and experimental use, where you can check the operation of its stages, such as control and engine power
    corecore