37 research outputs found

    Morphogénése et variabilité au sein du système oculo-moteur

    No full text
    A large body of computational research has been devoted to understanding motor control.This approach, using saccadic adaptation as an example of sensorimotor learning, postulates specialized mechanisms responsible for a motor calibration or optimization processes of cost functions. This thesis dissertation provides an alternative view of oculomotor learning byshowing that saccadic amplitude distributions can be altered by their own consequences.First we manipulated saccadic gain medians. We eliminated the postsaccadic retinal error (either by extinguishing the target during the saccade or by stabilizing its image on the fovea) and provided auditory or visual consequences after the saccades meeting amplitude criteria. This reinforcement procedure could induce gain changes similar to saccadic adaptation obtained via a conventional double-Step paradigm.Then we showed that part of saccadic amplitude variability may be controlled by operant learning. Saccadic gain distributions were reinforced with a tone depending on variability criteria.Our data suggested that oculomotor variability may not result solely from an internal randomnoise. Finally we designed a new paradigm involving a visual search task in which presenting atarget was effective to reinforce various saccadic amplitude variability levels. This means that in real life, seeing the target is a consequence controlling (at least in part) saccadic properties.These results show that a general operant learning process, depending on the functional consequences of eye movements, can guide changes in saccadic amplitude. This may be critical to maintain saccadic accuracy during the lifespan.Un vaste corpus de recherches computationnelles est consacré à l’analyse du contrôle moteur. Cette approche, qui étudie l’adaptation saccadique comme un modèle d’apprentissage sensori-Moteur, invoque des mécanismes spécialisés dans la calibration de gains internes ou l’optimisation de fonctions de coûts. Cette thèse propose une explication différente de l’apprentissage oculo-Moteur en montrant que les distributions d’amplitudes saccadiques peuventêtre modifiées par leurs conséquences.D’abord, nous avons manipulé la médiane du gain saccadique. Nous avons éliminé l’erreur rétinienne post-Saccadique et présenté des stimulus sonores ou visuels après les saccades répondant à des critères d’amplitude. Ce renforcement opérant a induit des changements de gain similaires à l’adaptation saccadique obtenue par le paradigme conventionnel de double saut. Puis nous avons montré qu’une part de la variabilité peut être contrôlée par un apprentissage opérant. Différents niveaux de variabilité de gain ont été renforcés avec un son. Les changements obtenus suggèrent que la variabilité ne résulte pas uniquement d’un bruit interne. Enfin, dans une tâche de recherche visuelle, la présentation de la cible en guise d’agent renforçateur a aussi permis d’augmenter puis de réduire la variabilité des amplitudes saccadiques. Cela signifie que voir lacible est une conséquence qui contrôle (en partie) les propriétés des saccades.Ces études montrent qu’un processus général d’apprentissage, qui dépend des conséquences fonctionnelles des saccades, peut guider les changements de leur amplitude. Cela pourrait s’avérer crucial pour maintenir la précision des saccades tout au long de la vie

    Retention of saccadic adaptation induced by reinforcement learning

    No full text
    International audienceWe have previously shown that saccadic amplitude can be adapted via reinforcement learning and not only via the conventional double-step paradigm (Madelain, Paeye & Wallman, 2011). To disentangle post-saccadic visual error (known to induce saccadic adaptation) from reinforcement, we extinguished the target during saccades and provided rewarding tones whenever saccades met specific amplitudecriteria. Such auditory reinforcement induced changes in saccadic amplitude similar to the changes obtained using the double-step paradigm. We proposed that saccadic adaptation might involve a general learning mechanism in which saccades are reinforced by the clear vision of the target. The goal of the present study is to examine the retention of reinforced adaptation. Saccadic amplitude was decreased (backward adaptation) or increased (forward adaptation) using our reinforcement paradigm. Five days after the last reinforcement session, the amount of backward adaptation (n=7) was still significant (-20.1%, SEM=4.2, retention rate: 75.4%) and forward adaptation (n=4) kept increasing (27.3%, SEM=11.5, retention rate: 145%). Preliminary data also showed retention 12 and 19 days after the last reinforcement session. Overall, the retention was stronger than in conventional adaptation.These long-lasting effects of reinforced adaptation are consistent with previous findings indicating that the effects of conventional backward adaptation can still be observed two months later (Wang et al., 2012). This provides further argument for the involvement of a general learning mechanism in saccadic adaptation. Presumably, auditory consequences of saccades provided during reinforcement sessionsincreased context specificity, crucial for sensorimotor adaptation

    Porphogenesis and variability in the oculomotor system

    No full text
    Un vaste corpus de recherches computationnelles est consacré à l’analyse du contrôle moteur. Cette approche, qui étudie l’adaptation saccadique comme un modèle d’apprentissage sensori-Moteur, invoque des mécanismes spécialisés dans la calibration de gains internes ou l’optimisation de fonctions de coûts. Cette thèse propose une explication différente de l’apprentissage oculo-Moteur en montrant que les distributions d’amplitudes saccadiques peuventêtre modifiées par leurs conséquences.D’abord, nous avons manipulé la médiane du gain saccadique. Nous avons éliminé l’erreur rétinienne post-Saccadique et présenté des stimulus sonores ou visuels après les saccades répondant à des critères d’amplitude. Ce renforcement opérant a induit des changements de gain similaires à l’adaptation saccadique obtenue par le paradigme conventionnel de double saut. Puis nous avons montré qu’une part de la variabilité peut être contrôlée par un apprentissage opérant. Différents niveaux de variabilité de gain ont été renforcés avec un son. Les changements obtenus suggèrent que la variabilité ne résulte pas uniquement d’un bruit interne. Enfin, dans une tâche de recherche visuelle, la présentation de la cible en guise d’agent renforçateur a aussi permis d’augmenter puis de réduire la variabilité des amplitudes saccadiques. Cela signifie que voir lacible est une conséquence qui contrôle (en partie) les propriétés des saccades.Ces études montrent qu’un processus général d’apprentissage, qui dépend des conséquences fonctionnelles des saccades, peut guider les changements de leur amplitude. Cela pourrait s’avérer crucial pour maintenir la précision des saccades tout au long de la vie.A large body of computational research has been devoted to understanding motor control.This approach, using saccadic adaptation as an example of sensorimotor learning, postulates specialized mechanisms responsible for a motor calibration or optimization processes of cost functions. This thesis dissertation provides an alternative view of oculomotor learning byshowing that saccadic amplitude distributions can be altered by their own consequences.First we manipulated saccadic gain medians. We eliminated the postsaccadic retinal error (either by extinguishing the target during the saccade or by stabilizing its image on the fovea) and provided auditory or visual consequences after the saccades meeting amplitude criteria. This reinforcement procedure could induce gain changes similar to saccadic adaptation obtained via a conventional double-Step paradigm.Then we showed that part of saccadic amplitude variability may be controlled by operant learning. Saccadic gain distributions were reinforced with a tone depending on variability criteria.Our data suggested that oculomotor variability may not result solely from an internal randomnoise. Finally we designed a new paradigm involving a visual search task in which presenting atarget was effective to reinforce various saccadic amplitude variability levels. This means that in real life, seeing the target is a consequence controlling (at least in part) saccadic properties.These results show that a general operant learning process, depending on the functional consequences of eye movements, can guide changes in saccadic amplitude. This may be critical to maintain saccadic accuracy during the lifespan

    Reinforcement of saccadic peak velocities

    No full text
    Afficheno abstrac

    REINFORCING SACCADIC AMPLITUDE VARIABILITY

    No full text
    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we reinforced the least frequent saccadic amplitudes to increase variability, and then reinforced the central part of the amplitude distributions to reduce variability. The target was placed at a constant distance from the fovea after the saccade to maintain the postsaccadic visual signal constant and an auditory reinforcement was delivered depending on saccadic amplitude. The second experiment tested the effects of the contingency. We reinforced high levels of variability in 4 participants, whereas 4 other participants were assigned to a yoked control group. On average, saccadic amplitude standard deviations were doubled while the medians remained mostly unchanged in the experimental participants in both experiments, and variability returned to baseline level when low variability was reinforced. In the control group no consistent changes in amplitude distributions were observed. These results, showing that variability can be reinforced, challenge the idea of a stochastic neural noise. We instead propose that selection processes constrain saccadic amplitude distributions

    Finding the target as a reinforcer of saccadic amplitude variability in a visual search task.

    No full text
    International audienc

    Operant control of variability in saccadic amplitude

    No full text
    Afficheno abstrac
    corecore