22 research outputs found

    Oligomeric Status and Nucleotide Binding Properties of the Plastid ATP/ADP Transporter 1: Toward a Molecular Understanding of the Transport Mechanism

    Get PDF
    Background: Chloroplast ATP/ADP transporters are essential to energy homeostasis in plant cells. However, their molecular mechanism remains poorly understood, primarily due to the difficulty of producing and purifying functional recombinant forms of these transporters. Methodology/Principal Findings: In this work, we describe an expression and purification protocol providing good yields and efficient solubilization of NTT1 protein from Arabidopsis thaliana. By biochemical and biophysical analyses, we identified the best detergent for solubilization and purification of functional proteins, LAPAO. Purified NTT1 was found to accumulate as two independent pools of well folded, stable monomers and dimers. ATP and ADP binding properties were determined, and Pi, a co-substrate of ADP, was confirmed to be essential for nucleotide steady-state transport. Nucleotide binding studies and analysis of NTT1 mutants lead us to suggest the existence of two distinct and probably inter-dependent binding sites. Finally, fusion and deletion experiments demonstrated that the C-terminus of NTT1 is not essential for multimerization, but probably plays a regulatory role, controlling the nucleotide exchange rate. Conclusions/Significance: Taken together, these data provide a comprehensive molecular characterization of a chloroplas

    Cell-free production, purification and characterization of human mitochondrial ADP/ATP carriers

    No full text
    International audienceMitochondrial Carriers (MCs) are responsible for fluent traffic of a variety of compounds that need to be shuttled via mitochondrial inner membranes to maintain cell metabolism. The ADP/ATP Carriers (AACs) are responsible for the import of ADP inside the mitochondria and the export of newly synthesized ATP. In human, four different AACs isoforms are described which are expressed in tissue-specific manner. They are involved in different genetic diseases and play a role in cancerogenesis. Up to now only the structures of the bovine (isoform 1) and yeast (isoforms 2 and 3) AAC have been determined in one particular conformation, obtained in complex with the CATR inhibitor. Herein, we report that full-length human ADP/ATP Carriers isoform 1 and 3 were successfully expressed in cell-free system and purified in milligram amounts in detergent-solubilized state. The proteins exhibited the expected secondary structure content. Thermostability profiles showing stabilization by the CATR inhibitor suggest that the carriers are well folded

    Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis.

    No full text
    International audienceBacterial virulence depends on the correct folding of surface-exposed proteins, a process catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. The Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host interactive biology, while the function of DsbA3 remains unknown. This work reports the biochemical characterization of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. As predicted by sequence homology, both enzymes adopt the classic Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of -80 mV, the neisserial DsbAs are the most oxidizing thioredoxin-like enzymes known to date. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. For each of these enzymes, this study shows that a threonine residue found within the active-site region plays a key role in dictating this extraordinary oxidizing power. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family

    The Crystal Structure of Mitochondrial (Type 1A) Peptide Deformylase Provides Clear Guidelines for the Design of Inhibitors Specific for the Bacterial Forms.

    No full text
    Peptide deformylase (PDF) inhibitors have a strong potential to be used as a new class of antibiotics. However, recent studies have shown that the mitochondria of most eukaryotes, including humans, contain an essential PDF, PDF1A. The crystal structure of the Arabidopsis thaliana PDF1A (AtPDF1A), considered representative of PDF1As in general, has been determined. This structure displays several similarities to that of known bacterial PDFs. AtPDF1A behaves as a dimer, with the C-terminal residues responsible for linking the two subunits. This arrangement is similar to that of Leptospira interrogans PDF, the only other dimeric PDF identified to date. AtPDF1A is the first PDF for which zinc has been identified as the catalytic ion. However, the zinc binding pocket does not differ from the binding pockets of PDFs with iron rather than zinc. The crystal structure of AtPDF1A in complex with a substrate analog revealed that the substrate binding pocket of PDF1A displays strong modifications. The S1' binding pocket is significantly narrower, due to the creation of a floor from residues present in all PDF1As but not in bacterial PDFs. A true S3' pocket is created by the residues of a helical CD-loop, which is very long in PDF1As. Finally, these modified substrate binding pockets modify the position of the substrate in the active site. These differences provide guidelines for the design of bacterial PDF inhibitors that will not target mitochondrial PDFs

    Expression of a chloroplast ATP/ADP transporter in E. coli membranes: behind the Mistic strategy.

    Get PDF
    International audienceEukaryotic membrane protein expression is still a major bottleneck for structural studies. Production in E. coli often leads to low expression level and/or aggregated proteins. In the last decade, strategies relying on new fusion protein expression revealed promising results. Fusion with the amphipatic Mistic protein has been described to favor expression in E. coli membranes. Although, this approach has already been reported for a few membrane proteins, little is known about the activity of the fused proteins. We used this strategy and obtained high expression levels of a chloroplast ATP/ADP transporter from A. thaliana (NTT1) and characterized its transport properties. NTT1 fused to Mistic has a very low transport activity which can be recovered after in vivo Mistic fusion cleavage. Moreover, detailed molecular characterization of purified NTT1 mature form, NTT1 fused to Mistic or NTT1 cleaved-off from this fusion highlights the correct fold of the latter one. Therefore, considering the higher quantity of purified NTT1 mature form obtained via the Mistic fusion approach, this is a valuable strategy for obtaining quantities of pure and active proteins that are adequate for structural studies

    Microtubule Regulation in Mitosis: Tubulin Phosphorylation by the Cyclin-dependent Kinase Cdk1

    Get PDF
    The activation of the cyclin-depdndent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubule- or tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates β-tubulin both in vitro and in vivo. Phosphorylation occurs on Ser172 of β-tubulin, a site that is well conserved in evolution. Using a phosphopeptide antibody, we find that a fraction of the cell tubulin is phosphorylated during mitosis, and this tubulin phosphorylation is inhibited by the Cdk1 inhibitor roscovitine. In mitotic cells, phosphorylated tubulin is excluded from microtubules, being present in the soluble tubulin fraction. Consistent with this distribution in cells, the incorporation of Cdk1-phosphorylated tubulin into growing microtubules is impaired in vitro. Additionally, EGFP-β3-tubulin(S172D/E) mutants that mimic phosphorylated tubulin are unable to incorporate into microtubules when expressed in cells. Modeling shows that the presence of a phosphoserine at position 172 may impair both GTP binding to β-tubulin and interactions between tubulin dimers. These data indicate that phosphorylation of tubulin by Cdk1 could be involved in the regulation of microtubule dynamics during mitosis

    Impaired transport of nucleotides in a mitochondrial carrier explains severe human genetic diseases.

    No full text
    International audienceThe mitochondrial ADP/ATP carrier (AAC) is a prominent actor in the energetic regulation of the cell, importing ADP into the mitochondria and exporting ATP toward the cytoplasm. Severe genetic diseases have been ascribed to specific mutations in this membrane protein. How minute, well-localized modifications of the transporter impact the function of the mitochondria remains, however, largely unclear. Here, for the first time, the relationship between all documented pathological mutations of the AAC and its transport properties is established. Activity measurements combined synergistically with molecular-dynamics simulations demonstrate how all documented pathological mutations alter the binding affinity and the translocation kinetics of the nucleotides. Throwing a bridge between the pathologies and their molecular origins, these results reveal two distinct mechanisms responsible for AAC-related genetic disorders, wherein the mutations either modulate the association of the nucleotides to the carrier by modifying its electrostatic signature or reduce its conformational plasticity

    Production of UCP1 a membrane protein from the inner mitochondrial membrane using the cell free expression system in the presence of a fluorinated surfactant.

    Get PDF
    International audienceStructural studies of membrane protein are still challenging due to several severe bottlenecks, the first being the overproduction of well-folded proteins. Several expression systems are often explored in parallel to fulfil this task, or alternately prokaryotic analogues are considered. Although, mitochondrial carriers play key roles in several metabolic pathways, only the structure of the ADP/ATP carrier purified from bovine heart mitochondria was determined so far. More generally, characterisations at the molecular level are restricted to ADP/ATP carrier or the uncoupling protein UCP1, another member of the mitochondrial carrier family, which is abundant in brown adipose tissues. Indeed, mitochondrial carriers have no prokaryotic homologues and very few efficient expression systems were described so far for these proteins. We succeeded in producing UCP1 using a cell free expression system based on E. coli extracts, in quantities that are compatible with structural approaches. The protein was synthesised in the presence of a fluorinated surfactant, which maintains the protein in a soluble form. Further biochemical and biophysical analysis such as size exclusion chromatography, circular dichroism and thermal stability, of the purified protein showed that the protein is non-aggregated, monodisperse and well-folded

    DHR51, the Drosophila melanogaster Homologue of the Human Photoreceptor Cell-Specific Nuclear Receptor, Is a Thiolate Heme-Binding Protein

    No full text
    International audienceHeme has been recently described as a regulating ligand for the activity of the human nuclear receptors (NR) REV-ERB alpha and REV-ERB beta and their Drosophila homologue E75. Here, we report the cloning, expression in Escherichia coli, purification, and screening for the heme-binding ability of 11 NR ligand-binding domains of Drosophila melanogaster (DHR3, DHR4, DHR39, DHR51, DHR78, DHR83, HNF4, TLL, ERR, FTZ-F1, and E78), of unknown structure. One of these NRs, DHR51, homologous to the human photoreceptor cell-specific nuclear receptor (PNR), specifically binds heme and exhibits a UV-visible spectrum identical to that of heme-bound E75-LBD. EPR and UV-visible absorption spectroscopy indicates that, like in E75, the heme contains a hexa-coordinated low spin ferric iron. One of its axial ligands is a tightly bound cysteine, while the other one is a histidine. A dissociation constant of 0.5 mu M for the heme was measured by isothermal titration calorimetry. We show that DHR51 binds NO and CO and discuss the possibility that DHR51 may be either a gas or a heme sensor
    corecore