63 research outputs found

    Etude des mécanismes moléculaires et cellulaires impliqués dans le développement de la dystrophie myotonique de type 1 à l'aide de cellules souches embryonnaires humaines porteuses de la mutation causale

    Get PDF
    Parmi leurs applications prometteuses, les cellules souches pluripotentes humaines prĂ©sentent un potentiel inestimable pour amĂ©liorer la comprĂ©hension des mĂ©canismes molĂ©culaires et cellulaires impliquĂ©s dans le dĂ©veloppement de maladies monogĂ©niques. Cette application est dans un premier temps devenue possible grĂące Ă  l utilisation de lignĂ©es de cellules souches embryonnaires humaines (CSEh) porteuses de mutation causale de maladie monogĂ©nique, obtenues au cours d un diagnostique prĂ©-implantatoire, puis dans un second temps par la reprogrammation des cellules somatiques en cellules souches pluripotentes (iPS). Dans le cadre de la validation de ce concept, nous avons dĂ©montrĂ© que des lignĂ©es de CSEh porteuses de la mutation causale de la dystrophie myotonique de type 1 (DM1), ainsi que leursprogĂ©nies neurales et mĂ©sodermiques, exprimaient des dĂ©fauts molĂ©culaires caractĂ©ristiques de la pathologie. Par l intermĂ©diaire d une Ă©tude transcriptomique comparative, nous avons identifiĂ© une liste de biomarqueurs pouvant ĂȘtre considĂ©rĂ©s comme une nouvelle signature molĂ©culaire de la DM1. Parmi ces derniers, nous avons montrĂ© que l anomalie d expression de certains gĂšnes de la famille SLITRK Ă©tait Ă  l origine des dĂ©fauts d arborisation neuritique mis en Ă©vidence dans des cellules motoneuronales dĂ©rivĂ©es des CSEh mutĂ©es, et que ces cellules peuvent interagir avec leur ciblemusculaire. ParallĂšlement, nous avons identifiĂ© un facteur de transcription Ă  domaine Krab dont l expression est fortement altĂ©rĂ©e dans la DM1 et qui semble ĂȘtre impliquĂ© dans les dĂ©fauts de rĂ©gĂ©nĂ©ration musculaire associĂ© Ă  des fins thĂ©rapeutiques en dĂ©finissant leur capacitĂ© Ă  modĂ©liser une maladie gĂ©nĂ©tique de façon suffisamment prĂ©cise pour permettre d Ă©laborer des biothĂ©rapies spĂ©cifiquement liĂ©es aux mĂ©canismes molĂ©culaires mis en jeu.Human pluripotent stem cells present far reaching implication not only for their therapeutic potential but also for the understanding of the molecular and cellular mechanisms of monogenic diseases. This application became at first possible by using human embryonic stem cells lines (hES) carrying the causal mutation of the monogenic disease, obtained during pre-implantation genetic diagnosis, thereafter through the development of somatic cells reprogramming into pluripotent stem cells (iPS). In line with this concept, we provided evidence that hES lines carrying the causal mutation of myotonic dystrophy type 1 (DM1), as well as their neural and mesodermal progenitors, expressed characteristic molecular defects of the pathology. Through a comparative study of their transcriptome profile, we identified a list of biomarkers which can be considered as new molecular signature of DM1. Among these genes, we showed that abnormal expression of some genes of the SLITRK family was responsible for the defective neuritic outgrowth observed in motor neuron cells derived from mutated hES, but that these cells could nonetheless interact with their muscular target. In parallel, we identified a Krab domain transcription factor which expression is strongly altered in DM1 and which seems to be involved in muscular regeneration defects associated with DM1. In conclusion, the aim of this work was to extend the spectrum of hES cells use for therapeutic purposes by accurately defining their capacity to model a genetic disease, enabling the elaboration of biotherapies targeted to disease specific molecular mechanisms.EVRY-Bib. Ă©lectronique (912289901) / SudocSudocFranceF

    Etude des mécanismes moléculaires de la Dystrophie Myotonique de Type 1 à l'aide de cellules souches embryonnaires humaines porteuses de la mutation causale

    Get PDF
    Les cellules souches embryonnaires humaines (hESC) reprĂ©sentent un nouvel outilbiologique au potentiel prometteur pour l amĂ©lioration de la comprĂ©hension des mĂ©canismes molĂ©culaires et cellulaires impliquĂ©s dans le dĂ©veloppement de maladies monogĂ©niques. Cette application est dans un premier temps devenue possible grĂące Ă  l utilisation de lignĂ©es de cellules souches embryonnaires humaines porteuses de mutation causale de pathologie, obtenues au cours d un diagnostique prĂ©-implantatoire. Mon travail de thĂšse s est inscrit dans la validation de ce nouveau concept en utilisant des lignĂ©es de cellules souches embryonnaires humaines porteuses de la mutation causale de la Dystrophie Myotonique de type 1 (DM1). Ces cellules, ainsi que leurs progenies neurales et mĂ©senchymateuses reprĂ©sentent un modĂšle pertinent pour l Ă©tude des consĂ©quences physiopathologiques de la mutation DM1 dans la mesure oĂč elles reproduisent certaines caractĂ©ristiques molĂ©culaires connues de la pathologie. Mon projet a eu pour objectif de caractĂ©riser d un point de vue molĂ©culaire et physiopathologique deux nouvelles altĂ©rations gĂ©niques identifiĂ©es par transcriptome diffĂ©rentiel entre les cellules contrĂŽles et DM1. Ainsi, ce travail nous a permis d identifier un nouveau marqueur, le facteur de transcription ZNF37A, dont l expression est diminuĂ©e en association avec la mutation DM1 et qui serait impliquĂ© dans les dĂ©fauts myogĂ©niques caractĂ©risant cette pathologie. ParallĂšlement nous avons identifiĂ© un nouveau dĂ©faut d Ă©pissage alternatif d un gĂšne impliquĂ© dans la guidance axonale, l EphA5 qui pourrait ĂȘtre impliquĂ© dans les dĂ©fauts cognitifs des patients DM1.Abstract not availableEVRY-Bib. Ă©lectronique (912289901) / SudocSudocFranceF

    A defective Krab-domain zinc-finger transcription factor contributes to altered myogenesis in myotonic dystrophy type 1

    Get PDF
    Myotonic dystrophy type 1 (DM1) is an RNA-mediated disorder caused by a non-coding CTG repeat expansion that, in particular, provokes functional alteration of CUG-binding proteins. As a consequence, several genes with misregulated alternative splicing have been linked to clinical symptoms. In our search for additional molecular mechanisms that would trigger functional defects in DM1, we took advantage of mutant gene-carrying human embryonic stem cell lines to identify differentially expressed genes. Among the different genes found to be misregulated by DM1 mutation, one strongly downregulated gene encodes a transcription factor, ZNF37A. In this paper, we show that this defect in expression, which derives from a loss of RNA stability, is controlled by the RNA-binding protein, CUGBP1, and is associated with impaired myogenesis—a functional defect reminiscent of that observed in DM1. Loss of the ZNF37A protein results in changes in the expression of the subunit α1 of the receptor for the interleukin 13. This suggests that the pathological molecular mechanisms linking ZNF37A and myogenesis may involve the signaling pathway that is known to promote myoblast recruitment during development and regeneratio

    Etude des mécanismes impliqués dans l établissement de l'infection persistante du virus de Theiler dans le systÚme nerveux central de la souris

    No full text
    PARIS-BIUSJ-ThĂšses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Unlocking the Complexity of Neuromuscular Diseases: Insights from Human Pluripotent Stem Cell-Derived Neuromuscular Junctions

    No full text
    Over the past 20 years, the use of pluripotent stem cells to mimic the complexities of the human neuromuscular junction has received much attention. Deciphering the key mechanisms underlying the establishment and maturation of this complex synapse has been driven by the dual goals of addressing developmental questions and gaining insight into neuromuscular disorders. This review aims to summarise the evolution and sophistication of in vitro neuromuscular junction models developed from the first differentiation of human embryonic stem cells into motor neurons to recent neuromuscular organoids. We also discuss the potential offered by these models to decipher different neuromuscular diseases characterised by defects in the presynaptic compartment, the neuromuscular junction, and the postsynaptic compartment. Finally, we discuss the emerging field that considers the use of these techniques in drug screening assay and the challenges they will face in the future

    Theiler's Virus Infection of Primary Cultures of Bone Marrow-Derived Monocytes/Macrophages

    No full text
    Theiler's virus, a murine picornavirus, causes a persistent infection of macrophage/microglial cells in the central nervous systems of SJL/J mice. Viral replication is restricted in the majority of infected cells, whereas a minority of them contain large amounts of viral RNA and antigens. For the present work, we infected primary cultures of bone marrow monocytes/macrophages from SJL/J mice with Theiler's virus. During the first 10 h postinfection (p.i.), infected monocytes/macrophages were round and covered with filopodia and contained large amounts of viral antigens throughout their cytoplasm. Later on, they were large, flat, and devoid of filopodia and they contained only small amounts of viral antigens distributed in discrete inclusions. These two types of infected cells were very reminiscent of the two types of infected macrophages found in the spinal cords of SJL/J mice. At the peak of virus production, the viral yield per cell was approximately 200 times lower than that for BHK-21 cells. Cell death occurred in the culture during the first 24 h p.i. but not thereafter. No infected cells could be detected after 4 days p.i., and the infection never spread to 100% of the cells. This restriction was unchanged by treating the medium at pH 2 but was abolished by treating it with a neutralizing alpha/beta interferon antiserum, indicating a role for this cytokine in limiting virus expression in monocyte/macrophage cultures. The role of alpha/beta interferon was confirmed by the observation that monocytes/macrophages from IFNA/BR(−/−) mice were fully permissive

    Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1

    No full text
    Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the expansion of a CTG repeat tract within the 3′ untranslated region (3′ UTR) of the dystrophia myotonica protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different organs. Up until now, different in vitro models from patients’ derived cells have largely contributed to the current understanding of DM1. Most of those studies have focused on muscle physiopathology. However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular models to cover the whole complexity of the disease and open up options for new therapeutic approaches. This review discusses how human pluripotent stem cell–based models significantly contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that led to actual phase III clinical trials

    Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1

    No full text
    Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the expansion of a CTG repeat tract within the 3â€Č untranslated region (3â€Č UTR) of the dystrophia myotonica protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different organs. Up until now, different in vitro models from patients’ derived cells have largely contributed to the current understanding of DM1. Most of those studies have focused on muscle physiopathology. However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular models to cover the whole complexity of the disease and open up options for new therapeutic approaches. This review discusses how human pluripotent stem cell–based models significantly contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that led to actual phase III clinical trials
    • 

    corecore