104 research outputs found

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio

    Heme-Oxygenases during Erythropoiesis in K562 and Human Bone Marrow Cells

    Get PDF
    In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity
    • …
    corecore