676 research outputs found
A study on the turbulent transport of an advective nature in the fluid plasma
Advective nature of the electrostatic turbulent flux of plasma energy is
studied numerically in a nearly adiabatic state. Such a state is represented by
the Hasegawa-Mima equation that is driven by a noise that may model the
destabilization due to the phase mismatch of the plasma density and the
electric potential. The noise is assumed to be Gaussian and not to be invariant
under reflection along a direction . It is found that the flux density
induced by such noise is anisotropic: While it is random along , it is
not along the perpendicular direction and the flux is not
diffusive. The renormalized response may be approximated as advective with the
velocity being proportional to in the Fourier space
No polymorphisms in the coding region of the prion-like protein gene in Thoroughbred racehorses
Prion diseases are fatal neurodegenerative diseases characterised by the accumulation of an abnormal prion protein isoform (PrPSc), which is converted from the normal prion protein (PrPC). Prion diseases have been reported in an extensive number of species but not in horses up to now; therefore, horses are known to be a species resistant to prion diseases. The prion-like protein gene (PRND) is closely located downstream of the prion protein gene (PRNP) and the prion-like protein (Doppel) is a homologue with PrP. Previous studies have shown that an association between prion diseases and polymorphisms of the PRND gene is reported in the main hosts of prion diseases. Hence, we examined the genetic variations of the PRND gene in Thoroughbred horses. Interestingly, polymorphisms of the PRND gene were not detected. In addition, we conducted a comparative analysis of the amino acid sequences of the PRND gene to identify the differences between horses and other species. The amino acid sequence of the horse PRND gene showed the highest identity to that of sheep (83.7%), followed by that of goats, cattle and humans. To the best of our knowledge, this is the first genetic study of the PRND gene in horses
The first report of single nucleotide polymorphisms in the open reading frame of the prion-like protein gene in rabbits
BackgroundNatural cases of prion disease have not been reported in rabbits, and prior attempts to identify a prion conversion agent have been unsuccessful. However, recent applications of prion seed amplifying experimental techniques have sparked renewed interest in the potential susceptibility of rabbits to prion disease infections. Among several factors related to prion disease, polymorphisms within the prion-like protein gene (PRND), a member of the prion protein family, have been reported as significantly associated with disease susceptibility in various species. Therefore, our study aimed to investigate polymorphisms in the PRND gene of rabbits and analyze their genetic characteristics.MethodsGenomic DNA was extracted from 207 rabbit samples to investigate leporine PRND polymorphisms. Subsequently, amplicon sequencing targeting the coding region of the leporine PRND gene was conducted. Additionally, linkage disequilibrium (LD) analysis was employed to assess the connection within and between loci. The impact of non-synonymous single nucleotide polymorphisms (SNPs) on the Doppel protein was evaluated using PolyPhen-2.ResultsWe found nine novel SNPs in the leporine PRND gene: c.18A > G, c.76G > C, c.128C > T, c.146C > T, c.315A > G, c.488G > A, c.525G > C, c.544G > A, and c.579A > G. Notably, seven of these PRND SNPs, excluding c.525G > C and c.579A > G, exhibited strong LD values exceeding 0.3. In addition, LD analysis confirmed a robust link between PRNP SNP c.234C > T and PRND SNPs at c.525G > C and c.579A > G. Furthermore, according to PolyPhen-2 and SIFT analyses, the four non-synonymous SNPs were predicted to have deleterious effects on the function or structure of the Doppel protein. However, PANTHER and Missense3D did not indicate such effects.ConclusionIn this paper, we have identified novel SNPs in the rabbit PRND gene and predicted their potential detrimental effects on protein function or structure through four non-synonymous SNPs. Additionally, we observed a genetic linkage between SNPs in the PRND and PRNP genes. These findings may provide insights into understanding the characteristics of rabbits as partially resistant species. To the best of our knowledge, this study is the first to genetically characterize PRND SNPs in rabbits
Papillary Adenocarcinoma
Gastric papillary adenocarcinoma is one of the histological variants of gastric cancer that shows more aggressive clinicopathological behavior compared to tubular adenocarcinoma. Previous studies have reported higher lymphovascular and submucosal invasion rates for papillary adenocarcionoma than those of tubular adenocarcinoma. However, the current guidelines categorize papillary adenocarcinoma and tubular adenocarcinoma together as differentiated-type tumor and have recommended the same endoscopic submucosal dissection criteria. Thus, concerns have been raised regarding the appropriateness of the current policy. To validate the current guidelines, the lymph node metastasis rate from surgical specimen studies as well as the long-term outcomes of endoscopic submucosal dissection for papillary adenocarcinomas need to be taken into consideration. In this review, I aimed to review the current understanding of the clinical and pathological features of papillary adenocarcinoma. In addition, I aimed to generate an integrated view regarding the outcomes of endoscopic submucosal dissection and surgery for papillary adenocarcinoma in order to evaluate the appropriateness of the current guidelines
Biological Effect of Gas Plasma Treatment on CO 2
Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering
Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature
Transparent electronic materials are increasingly in demand for a variety of
optoelectronic applications. BaSnO3 is a semiconducting oxide with a large band
gap of more than 3.1 eV. Recently, we discovered that La doped BaSnO3 exhibits
unusually high electrical mobility of 320 cm^2(Vs)^-1 at room temperature and
superior thermal stability at high temperatures [H. J. Kim et al. Appl. Phys.
Express. 5, 061102 (2012)]. Following that work, we report various physical
properties of (Ba,La)SnO3 single crystals and films including
temperature-dependent transport and phonon properties, optical properties and
first-principles calculations. We find that almost doping-independent mobility
of 200-300 cm^2(Vs)^-1 is realized in the single crystals in a broad doping
range from 1.0x10^19 to 4.0x10^20 cm^-3. Moreover, the conductivity of ~10^4
ohm^-1cm^-1 reached at the latter carrier density is comparable to the highest
value. We attribute the high mobility to several physical properties of
(Ba,La)SnO3: a small effective mass coming from the ideal Sn-O-Sn bonding,
small disorder effects due to the doping away from the SnO2 conduction channel,
and reduced carrier scattering due to the high dielectric constant. The
observation of a reduced mobility of ~70 cm^2(Vs)^-1 in the film is mainly
attributed to additional carrier-scatterings which are presumably created by
the lattice mismatch between the substrate SrTiO3 and (Ba,La)SnO3. The main
optical gap of (Ba,La)SnO3 single crystals remained at about 3.33 eV and the
in-gap states only slightly increased, thus maintaining optical transparency in
the visible region. Based on these, we suggest that the doped BaSnO3 system
holds great potential for realizing all perovskite-based, transparent
high-frequency high-power functional devices as well as highly mobile
two-dimensional electron gas via interface control of heterostructured films.Comment: 31 pages, 7 figure
Crude Extracts of Caenorhabditis elegans Suppress Airway Inflammation in a Murine Model of Allergic Asthma
Epidemiological studies suggest an inverse relationship between helminth infections and allergic disease, and several helminth-derived products have been shown to suppress allergic responses in animals. This study was undertaken to evaluate the effect of a crude extract of Caenorhabditis elegans on allergic airway inflammation in a murine model of asthma. Allergic airway inflammation was induced in BALB/c mice by sensitization with ovalbumin. The effect of the C. elegans crude extract on the development of asthma and on established asthma was evaluated by analyzing airway hyperresponsiveness, serum antibody titers, lung histology and cell counts and cytokine levels in the bronchoalveolar lavage fluid. The role of IFN-γ in the suppression of asthma by the C. elegans crude extract was investigated in IFN-γ knockout and wild-type mice. When mice were sensitized with ovalbumin together with the crude extract of C. elegans, cellular infiltration into the lung was dramatically reduced in comparison with the ovalbumin-treated group. Treatment of mice with the C. elegans crude extract significantly decreased methacholine-induced airway hyperresponsiveness and the total cell counts and levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid but increased the levels of IFN-γ and IL-12. Sensitization with the C. elegans crude extract significantly diminished the IgE and IgG1 responses but provoked elevated IgG2a levels. However, the suppressive effect of the C. elegans crude extract was abolished in IFN-γ knockout mice, and the Th2 responses in these mice were as strong as those in wild-type mice sensitized with ovalbumin. The crude extract of C. elegans also suppressed the airway inflammation associated with established asthma. This study provides new insights into immune modulation by the C. elegans crude extract, which suppressed airway inflammation in mice not only during the development of asthma but also after its establishment by skewing allergen-induced Th2 responses to Th1 responses
Development of a chicken interferon-induced transmembrane protein 3 (IFITM3)-specific monoclonal antibody using phage display
Interferon-induced transmembrane protein 3 (IFITM3) has potent antiviral activity against several viruses. Recent studies have reported that the chicken IFITM3 gene also plays a pivotal role in blocking viral replication, but these studies are considerably limited due to being conducted at the RNA level only. Thus, the development of a chicken IFITM3 protein-specific antibody is needed to validate the function of IFITM3 at the protein level. Epitope prediction was performed with the immune epitope database analysis resource (IEDB-AR) program. The epitope was validated by four in silico programs, Jped4, Clustal Omega, TMpred and SOSUI. Chicken IFITM3 protein-specific monoclonal antibodies were screened by enzyme-linked immunosorbent assay through affinity between recombinant IFITM3 protein and phage-displayed candidate antibodies. Validation of the reactivity of the chicken IFITM3 protein-specific antibody to chicken tissues was carried out using western blotting. We developed a chicken IFITM3 protein-specific monoclonal antibody using phage display. The reactivity of the antibody with peripheral chicken tissues was confirmed using western blotting. To the best of our knowledge, this was the first development of a chicken IFITM3 protein-specific monoclonal antibody using phage display
- …