3,465 research outputs found

    Recent Application of Bio-Alcohol: Bio-Jet Fuel

    Get PDF
    Recently, the biomass-based energy production has been actively studied as a research and development area for reducing carbon emissions as a solution to global warming caused by the increase of carbon dioxide emissions. Especially, as the energy consumption in the air transportation field increases, the carbon dioxide emissions increase simultaneously. Therefore, the bio-jet fuel production technology is being actively developed to solve this problem. The bio-jet fuel manufacturing process is a process of manufacturing biomass-derived jet fuel that can replace the existing petroleum-based jet fuel. It includes an alcohol-to-jet (ATJ) process using bio-alcohol such as bio-butanol and bio-ethanol, oil-to-jet (OTJ) process using vegetable oil, and an F-T process using syngas obtained from gasification of biomass-based raw materials

    Topological Structure of Dense Hadronic Matter

    Full text link
    We present a summary of work done on dense hadronic matter, based on the Skyrme model, which provides a unified approach to high density, valid in the large NcN_c limit. In our picture, dense hadronic matter is described by the {\em classical} soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons.Comment: 13 pages, 8 figures, Talk given at the KIAS-APCTP Symposium in Astro-Hadron Physics "Compact Stars: Quest for New States of Dense Matter", November 10-14, 2003, Seoul, Korea, published by World Scientific. Based on talk by B.-Y. Par

    Biological Effect of Gas Plasma Treatment on CO 2

    Get PDF
    Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering

    Effect of rhBMP-2 applied with a 3D-printed titanium implant on new bone formation in rabbit calvarium

    Get PDF
    Objective: This study sought to compare the biocompatibility of a three-dimensional (3D)-printed titanium implant with a conventional machined titanium product, as well as the effect of such implant applied with recombinant human Bone Morphogenetic Protein Type 2 (rhBMP-2) for guided bone regeneration. Methodology: Disk-shaped titanium specimens fabricated either by the conventional machining technique or by the 3D-printing technique were compared by MC3T3-E1 cells cytotoxicity assay. New bone formation was evaluated using a rapid prototype titanium cap applied to the calvaria of 10 rabbits, which were divided into two groups: one including an atelopeptide collagen plug on one side of the cap (group I) and the other including a plug with rhBMP-2 on the other side (group II). At six and 12 weeks after euthanasia, rabbits calvaria underwent morphometric analysis through radiological and histological examination. Results: Through the cytotoxicity assay, we identified a significantly higher number of MC3T3-E1 cells in the 3D-printed specimen when compared to the machined specimen after 48 hours of culture. Moreover, morphometric analysis indicated significantly greater bone formation at week 12 on the side where rhBMP-2 was applied when evaluating the upper portion immediately below the ca p. Conclusion: The results suggest that 3D-printed titanium implant applied with rhBMP-2 enables new bone formation
    • …
    corecore