83 research outputs found

    Evaluation of six CTLA-4 polymorphisms in high-risk melanoma patients receiving adjuvant interferon therapy in the He13A/98 multicenter trial

    Get PDF
    <p>ABSTRACT</p> <p>Purpose</p> <p>Interferon is approved for adjuvant treatment of patients with stage IIb/III melanoma. The toxicity and uncertainty regarding survival benefits of interferon have qualified its acceptance, despite significant durable relapse prevention in a fraction of patients. Predictive biomarkers that would enable selection of patients for therapy would have a large impact upon clinical practice. Specific CTLA-4 polymorphisms have previously shown an association with response to CTLA-4 blockade in patients with metastatic melanoma and the development of autoimmunity.</p> <p>Experimental design</p> <p>286 melanoma patients and 288 healthy controls were genotyped for six CTLA-4 polymorphisms previously suggested to be important (AG 49, CT 318, CT 60, JO 27, JO30 and JO 31). Specific allele frequencies were compared between the healthy and patient populations, as well as presence or absence of these in relation to recurrence. Alleles related to autoimmune disease were also investigated.</p> <p>Results</p> <p>No significant differences were found between the distributions of CTLA-4 polymorphisms in the melanoma population compared with healthy controls. Relapse free survival (RFS) and overall survival (OS) did not differ significantly between patients with the alleles represented by these polymorphisms. No correlation between autoimmunity and specific alleles was shown. The six polymorphisms evaluated where strongly associated (Fisher's exact p-values < 0.001 for all associations) and significant linkage disequilibrium among these was indicated.</p> <p>Conclusion</p> <p>No polymorphisms of CTLA-4 defined by the SNPs studied were correlated with improved RFS, OS, or autoimmunity in this high-risk group of melanoma patients.</p

    α-Synuclein Expression Selectively Affects Tumorigenesis in Mice Modeling Parkinson's Disease

    Get PDF
    Alpha Synuclein (α-Syn) is a protein implicated in mechanisms of neuronal degeneration in Parkinson's disease (PD). α-Syn is primarily a neuronal protein, however, its expression is found in various tumors including ovarian, colorectal and melanoma tumors. It has been hypothesized that neurodegeneration may share common mechanisms with oncogenesis. We tested whether α-Syn expression affects tumorigenesis of three types of tumors. Specifically, B16 melanoma, E0771 mammary gland adenocarcinoma and D122 Lewis lung carcinoma. For this aim, we utilized transgenic mice expression the human A53T α-Syn form. We found that the in vivo growth of B16 and E0771 but not D122 was enhanced in the A53T α-Syn mice. The effect on tumorigenesis was not detected in age-matched APP/PS1 mice, modeling Alzheimer's disease (AD), suggesting a specific effect for α-Syn- dependent neurodegeneration. Importantly, transgenic α-Syn expression was detected within the three tumor types. We further show uptake of exogenously added, purified α-Syn, by the cultured tumor cells. In accord, with the affected tumorigenesis in the young A53T α-Syn mice, over- expression of α-Syn in cultured B16 and E0771 cells enhanced proliferation, however, had no effect on the proliferation of D122 cells. Based on these results, we suggest that certain forms of α-Syn may selectively accelerate cellular mechanisms leading to cancer

    Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics

    Get PDF
    Immune responses to some monoclonal antibodies (mAbs) and biologic proteins interfere with their efficacy due to the development of anti-drug antibodies (ADA). In the case of mAbs, most ADA target ‘foreign’ sequences present in the complementarity determining regions (CDRs). Humanization of the mAb sequence is one approach that has been used to render biologics less foreign to the human immune system. However, fully human mAbs can also drive immunogenicity. De-immunization (removing epitopes) has been used to reduce biologic protein immunogenicity. Here, we discuss a third approach to reducing the immunogenicity of biologics: introduction of Treg epitopes that stimulate Treg function and induce tolerance to the biologic protein. Supplementing humanization (replacing xenosequences with human) and de-immunization (reducing T effector epitopes) with tolerization (introducing Treg epitopes) where feasible, as a means of improving biologics ‘quality by design’, may lead to the development of ever more clinically effective, but less immunogenic, biologics

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required

    Skeletal Muscle Phenotypically Converts and Selectively Inhibits Metastatic Cells in Mice

    Get PDF
    Skeletal muscle is rarely a site of malignant metastasis; the molecular and cellular basis for this rarity is not understood. We report that myogenic cells exert pronounced effects upon co-culture with metastatic melanoma (B16-F10) or carcinoma (LLC1) cells including conversion to the myogenic lineage in vitro and in vivo, as well as inhibition of melanin production in melanoma cells coupled with cytotoxic and cytostatic effects. No effect is seen with non-tumorigenic cells. Tumor suppression assays reveal that the muscle-mediated tumor suppressor effects do not generate resistant clones but function through the down-regulation of the transcription factor MiTF, a master regulator of melanocyte development and a melanoma oncogene. Our findings point to skeletal muscle as a source of therapeutic agents in the treatment of metastatic cancers

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients
    corecore