48 research outputs found

    Favorable therapeutic response of osteoporosis patients to treatment with intravenous zoledronate compared with oral alendronate

    Get PDF
    Objectives: To evaluate the efficacy of orally-administered alendronate compared with intravenously-administered zoledronate. Methods: This prospective study was carried out at Barts Health HNS Trust between April 2010 and March 2012. This study compares changes in bone mineral density (BMD) in 234 patients treated with 2 bisphosphonates: alendronate taken orally, and zoledronate administered intravenously. One hundred and eighteen patients received alendronate at 70 mg/week, while 116 patients received zoledronate once annually. Dual energy x-ray absorptiometry was used to measure BMD of the left hip and anterior-posterior spine (lumbar L1-L4) skeletal sites at baseline, and at one-, and 2-years post-treatment. Results: This study provides evidence that lumbar spine BMD increased by 3.6% in patients receiving alendronate, and 5.7% in patients receiving zoledronate after 2 years compared with baseline values (p=0.0001 for both). Total hip BMD decreased in patients treated with alendronate by 0.4% but increased in patients receiving zoledronate by 0.8% (p=0.0001). Conclusion: This study provides evidence that zoledronate is more effective than alendronate in treating patients with osteoporosis and with no gastrointestinal (GI) serious side effects. Furthermore, zoledronate appears to have the added advantage of a better safety profile in patients suffering from GI intolerance of oral bisphosphonates

    Harnessing the Therapeutic Potential of Th17 Cells

    Get PDF
    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases

    TNFα inhibitors reduce bone loss in rheumatoid arthritis independent of clinical response by reducing osteoclast precursors and IL-20.

    Get PDF
    This is a pre-copyedited, author-produced version of an article accepted for publication in Rheumatology following peer review. The version of record:Mohammed Al-Bogami, Jonas Bystrom, Felix Clanchy, Taher E Taher, Pamela Mangat, Richard O Williams, Ali S Jawad, Rizgar A Mageed, TNFα inhibitors reduce bone loss in rheumatoid arthritis independent of clinical response by reducing osteoclast precursors and IL-20, Rheumatology, keaa551, https://doi.org/10.1093/rheumatology/keaa551 is available online at:  https://doi.org/10.1093/rheumatology/keaa551OBJECTIVES: About half of RA patients treated with TNFα inhibitors either do not respond or lose their initial therapeutic response over time. The clinical response is measured by reduction in DAS28, which primarily reflects inflammation. However, other effects of TNFα inhibitors, such as impact on bone erosion, are not assessed by DAS28. We aimed to examine the effect of TNFα inhibitors on bone density, bone biomarkers and cytokine production in responder and non-responder patients and assessed mechanisms of action. METHODS: BMD in the lumbar spine and femur neck of 117 RA patients was measured by DEXA scan. Bone turnover biomarkers CTX, osteoprotegerin (OPG), osteocalcin and RANKL were measured by ELISA. Levels of 16 cytokines in plasma and in tissue culture supernatants of ex vivo T cells were measured by multiplex assays and ELISA. The effect of treatment with TNFα inhibitors on blood mononuclear cell (MNC) differentiation to osteoclast precursors (OCP) was measured flow cytometry and microscopy. RESULTS: TNFα inhibitors improved lumbar spine BMD but had modest effects on blood bone biomarkers, irrespective of patients' clinical response. Blood OCP numbers and the ability of monocytes to differentiate to OCP in vitro declined after treatment. Treatment also reduced RANK expression and IL-20 production. BMD improvement correlated with reduced levels of IL-20 in responder patients. CONCLUSION: This study reveals that TNFα inhibitors reduce lumbar spine bone loss in RA patients irrespective of changes in DAS28. The reduction in bone loss is associated with reduction in IL-20 levels in responder patients

    Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumours

    Get PDF
    The majority of pituitary tumours are monoclonal in origin and arise sporadically or occasionally as part of multiple endocrine neoplasia type 1 (MEN1). Whilst a multi-step aetiology involving both oncogenes and tumour suppressor genes has been proposed for their development, the target(s) of these changes are less clearly defined. Both familial and sporadic pituitary tumours have been shown to harbour allelic deletion on 11q13, which is the location of the recently cloned MEN1 gene. We investigated 23 sporadic pituitary tumours previously shown to harbour allelic deletion on 11q13 with the marker PYGM centromeric and within 50 kb of the MEN1 locus. In addition, the use of intragenic polymorphisms in exon 9 and at D11S4946, and of telomeric loci at D11S4940 and D11S4936, revealed that five of 20 tumours had loss of heterozygosity (LOH) telomeric to the menin gene. However, the overall pattern of loss in informative cases was indicative of non-contiguous deletion that brackets the menin gene. Sequence analysis of all MEN1 coding exons and flanking intronic sequence, in tumours and matched patient leucocyte DNA, did not reveal mutation(s) in any of the 23 tumours studied. A benign polymorphism in exon 9 was encountered at the expected frequency, and in seven patients heterozygous for the polymorphism the tumour showed retention of both copies of the menin gene. Reverse transcription polymerase chain reaction analysis of ten evaluable tumours and four normal pituitaries revealed the presence of the menin transcript. Whilst these findings suggest that gene silencing is unlikely to be mechanistic in sporadic pituitary tumorigenesis, they do not exclude changes in the level or stability of the transcript or translation to mature protein. Our study would support and extend very recent reports of a limited role for mutations in the MEN1 gene in sporadic pituitary tumours. Alternatively, these findings may point to an, as yet, unidentified tumour suppressor gene in this region

    Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli

    Get PDF
    Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5′ RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of σ factors that control the expression of about 80% of these genes. As expected, the housekeeping σ70 was the most common type of promoter, followed by σ38. The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli

    Dutch guideline on total hip prosthesis

    Get PDF
    Contains fulltext : 97840.pdf (publisher's version ) (Open Access

    TNFα in the regulation of Treg and Th17 cells in rheumatoid arthritis and other autoimmune inflammatory diseases.

    No full text
    TNFα is a principal pro-inflammatory cytokine vital for immunity to infections. However, its excessive production is involved in chronic inflammation and disease pathology in autoimmune diseases. Evidence for its pathogenic role is validated by the fact that its neutralisation by therapeutic agents in vivo is beneficial in ameliorating disease and controlling symptoms. Paradoxically, however, treatment with TNFα inhibitors can either have no clinical effects, or even exacerbate disease in some patients. The explanation for such contradictory outcomes may lay in how and which downstream signalling pathways are activated and drive disease. TNFα causes its effects by binding to either or both of two membrane-bound receptors, TNFR1 and TNFR2. Engagement of the receptors can induce cell death or cell proliferation. T cells both produce and respond to TNFα and depending on whether the cytokine is membrane-bound or soluble and the level of expression of its two receptors, the biological outcome can be distinct. In addition, polymorphisms in genes encoding TNFα and T cell signalling proteins can significantly impact the outcome of TNFα receptor engagement. Early studies revealed that effector T cells in patients with rheumatoid arthritis (RA) are hyporesponsive due to chronic exposure to TNFα. However, recent evidence indicates that the relationship between TNFα and T cell responses is complex and, at times, can be paradoxical. In addition, there is controversy as to the specific effects of TNFα on different T cell subsets. This review will summarise knowledge on how TNFα modulates T cell responses and the effect of engaging either of its two receptors. Furthermore, we discuss how such interactions can dictate the outcome of treatment with TNFα inhibitors.Our study on TNFα in RA was supported by Research Grant No. WS872934 from Pfizer, UK
    corecore