33 research outputs found
Inhomogeneous non-Gaussianity
We propose a method to probe higher-order correlators of the primordial
density field through the inhomogeneity of local non-Gaussian parameters, such
as f_NL, measured within smaller patches of the sky. Correlators between
n-point functions measured in one patch of the sky and k-point functions
measured in another patch depend upon the (n+k)-point functions over the entire
sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to
detect or constrain higher-order correlators in local models of
non-Gaussianity, as well as to distinguish between single and multiple-source
scenarios for generating the primordial density perturbation, and more
generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches
the published versio
CMB Anisotropies at Second Order I
We present the computation of the full system of Boltzmann equations at
second-order describing the evolution of the photon, baryon and cold dark
matter fluids. These equations allow to follow the time evolution of the Cosmic
Microwave Background (CMB) anisotropies at second-order at all angular scales
from the early epoch, when the cosmological perturbations were generated, to
the present through the recombination era. This paper sets the stage for the
computation of the full second-order radiation transfer function at all scales
and for a a generic set of initial conditions specifying the level of
primordial non-Gaussianity. In a companion paper, we will present the
computation of the three-point correlation function at recombination which is
so relevant for the issue of non-Gaussianity in the CMB anisotropies.Comment: 26 pages, LaTeX file, typos correcte
Local non-Gaussianity from inflation
The non-Gaussian distribution of primordial perturbations has the potential
to reveal the physical processes at work in the very early Universe. Local
models provide a well-defined class of non-Gaussian distributions that arise
naturally from the non-linear evolution of density perturbations on
super-Hubble scales starting from Gaussian field fluctuations during inflation.
I describe the delta-N formalism used to calculate the primordial density
perturbation on large scales and then review several models for the origin of
local primordial non-Gaussianity, including the cuvaton, modulated reheating
and ekpyrotic scenarios. I include an appendix with a table of sign conventions
used in specific papers.Comment: 21 pages, 1 figure, invited review to appear in Classical and Quantum
Gravity special issue on non-linear and non-Gaussian cosmological
perturbation
Local non-Gaussianity from rapidly varying sound speeds
We study the effect of non-trivial sound speeds on local-type non-Gaussianity
during multiple-field inflation. To this end, we consider a model of
multiple-field DBI and use the deltaN formalism to track the super-horizon
evolution of perturbations. By adopting a sum separable Hubble parameter we
derive analytic expressions for the relevant quantities in the two-field case,
valid beyond slow variation. We find that non-trivial sound speeds can, in
principle, curve the trajectory in such a way that significant local-type
non-Gaussianity is produced. Deviations from slow variation, such as rapidly
varying sound speeds, enhance this effect. To illustrate our results we
consider two-field inflation in the tip regions of two warped throats and find
large local-type non-Gaussianity produced towards the end of the inflationary
process.Comment: 30 pages, 7 figures; typos corrected, references added, accepted for
publication in JCA
On the Physical Significance of Infra-red Corrections to Inflationary Observables
Inflationary observables, like the power spectrum, computed at one- and
higher-order loop level seem to be plagued by large infra-red corrections. In
this short note, we point out that these large infra-red corrections appear
only in quantities which are not directly observable. This is in agreement with
general expectations concerning infra-red effects.Comment: 11 pages; LateX file; 5 figures. Some coefficients in Eq.(A6)
corrected; References adde
Classical approximation to quantum cosmological correlations
We investigate up to which order quantum effects can be neglected in
calculating cosmological correlation functions after horizon exit. As a toy
model, we study theory on a de Sitter background for a massless
minimally coupled scalar field . We find that for tree level and one loop
contributions in the quantum theory, a good classical approximation can be
constructed, but for higher loop corrections this is in general not expected to
be possible. The reason is that loop corrections get non-negligible
contributions from loop momenta with magnitude up to the Hubble scale H, at
which scale classical physics is not expected to be a good approximation to the
quantum theory. An explicit calculation of the one loop correction to the two
point function, supports the argument that contributions from loop momenta of
scale are not negligible. Generalization of the arguments for the toy model
to derivative interactions and the curvature perturbation leads to the
conclusion that the leading orders of non-Gaussian effects generated after
horizon exit, can be approximated quite well by classical methods. Furthermore
we compare with a theorem by Weinberg. We find that growing loop corrections
after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references,
conclusions unchanged; v3: added section in which we compare with stochastic
approach; this version matches published versio
Multiple field inflation
Inflation offers a simple model for very early evolution of our Universe and
the origin of primordial perturbations on large scales. Over the last 25 years
we have become familiar with the predictions of single-field models, but
inflation with more than one light scalar field can alter preconceptions about
the inflationary dynamics and our predictions for the primordial perturbations.
I will discuss how future observational data could distinguish between
inflation driven by one field, or many fields. As an example, I briefly review
the curvaton as an alternative to the inflaton scenario for the origin of
structure.Comment: 27 pages, no figures. To appear in proceedings of 22nd IAP
Colloquium, Inflation +25, Paris, June 200
Infrared effects in inflationary correlation functions
In this article, I briefly review the status of infrared effects which occur
when using inflationary models to calculate initial conditions for a subsequent
hot, dense plasma phase. Three types of divergence have been identified in the
literature: secular, "time-dependent" logarithms, which grow with time spent
outside the horizon; "box-cutoff" logarithms, which encode a dependence on the
infrared cutoff when calculating in a finite-sized box; and "quantum"
logarithms, which depend on the ratio of a scale characterizing new physics to
the scale of whatever process is under consideration, and whose interpretation
is the same as conventional field theory. I review the calculations in which
these divergences appear, and discuss the methods which have been developed to
deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on
nonlinear and nongaussian perturbation theory. Some improvements compared to
version which will appear in CQG, especially in Sec. 2.3. 30 pages +
references
Strongly scale-dependent polyspectra from curvaton self-interactions
We study the scale dependence of the non-linearity parameters f_NL and g_NL
in curvaton models with self-interactions. We show that the spectral indices
n_fNL=d ln|f_NL|/(d ln k) and n_gNL=d ln |g_NL|/(d ln k) can take values much
greater than the slow--roll parameters and the spectral index of the power
spectrum. This means that the scale--dependence of the bi and trispectrum could
be easily observable in this scenario with Planck, which would lead to tight
additional constraints on the model. Inspite of the highly non-trivial
behaviour of f_NL and g_NL in the curvaton models with self-interactions, we
find that the model can be falsified if g_NL(k) is also observed.Comment: 19 pages, many figures. v2: Figure 4 replaced with a corrected
normalisation, conclusions unchanged. Matches version published in JCA
One-loop corrections to a scalar field during inflation
The leading quantum correction to the power spectrum of a
gravitationally-coupled light scalar field is calculated, assuming that it is
generated during a phase of single-field, slow-roll inflation.Comment: 33 pages, uses feynmp.sty and ioplatex journal style. v2: matches
version published in JCAP. v3: corrects sign error in Eq. (58). Corrects
final coefficient of the logarithm in Eq. (105). Small corrections to
discussion of divergences in 1-point function. Minor improvements to
discussion of UV behaviour in Sec. 4.