1,100 research outputs found

    Inhomogeneous non-Gaussianity

    Get PDF
    We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f_NL, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher-order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches the published versio

    Scale-dependent non-Gaussianity probes inflationary physics

    Full text link
    We calculate the scale dependence of the bispectrum and trispectrum in (quasi) local models of non-Gaussian primordial density perturbations, and characterize this scale dependence in terms of new observable parameters. They can help to discriminate between models of inflation, since they are sensitive to properties of the inflationary physics that are not probed by the standard observables. We find consistency relations between these parameters in certain classes of models. We apply our results to a scenario of modulated reheating, showing that the scale dependence of non-Gaussianity can be significant. We also discuss the scale dependence of the bispectrum and trispectrum, in cases where one varies the shape as well as the overall scale of the figure under consideration. We conclude providing a formulation of the curvature perturbation in real space, which generalises the standard local form by dropping the assumption that f_NL and g_NL are constants.Comment: 27 pages, 2 figures. v2: Minor changes to match the published versio

    Large non-Gaussianity from two-component hybrid inflation

    Full text link
    We study the generation of non-Gaussianity in models of hybrid inflation with two inflaton fields, (2-brid inflation). We analyse the region in the parameter and the initial condition space where a large non-Gaussianity may be generated during slow-roll inflation which is generally characterised by a large f_NL, tau_NL and a small g_NL. For certain parameter values we can satisfy tau_NL>>f_NL^2. The bispectrum is of the local type but may have a significant scale dependence. We show that the loop corrections to the power spectrum and bispectrum are suppressed during inflation, if one assume that the fields follow a classical background trajectory. We also include the effect of the waterfall field, which can lead to a significant change in the observables after the waterfall field is destabilised, depending on the couplings between the waterfall and inflaton fields.Comment: 16 pages, 6 figures; v2: comments and references added, typos corrected, matches published versio

    The trispectrum in ghost inflation

    Full text link
    We calculate the trispectrum in ghost inflation where both the contact diagram and scale-exchange diagram are taken into account. The shape of trispectrum is discussed carefully and we find that the local form is absent in ghost inflation. In general, for the non-local shape trispectrum there are not analogous parameters to Ï„NLloc.\tau_{NL}^{loc.} and gNLloc.g_{NL}^{loc.} which can completely characterize the size of local form trispectrum.Comment: 19 pages, 8 figures; clarifications and corrections added, version accepted for publication in JCA

    Evolution of fNL to the adiabatic limit

    Get PDF
    We study inflationary perturbations in multiple-field models, for which zeta typically evolves until all isocurvature modes decay--the "adiabatic limit". We use numerical methods to explore the sensitivity of the nonlinear parameter fNL to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of fNL to be large. Other examples can be constructed using a waterfall field to terminate inflation while fNL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak fNL.Comment: v1: 25 pages, plus Appendix and bibliography, 6 figures. v2: minor edits to match published version in JCA

    Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    Full text link
    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of "missing information" in Hawking radiation.Comment: 32 pages, 2 figures; v2: running of spectral index included and other minor changes; v3: minor changes to agree with published versio

    Local non-Gaussianity from rapidly varying sound speeds

    Get PDF
    We study the effect of non-trivial sound speeds on local-type non-Gaussianity during multiple-field inflation. To this end, we consider a model of multiple-field DBI and use the deltaN formalism to track the super-horizon evolution of perturbations. By adopting a sum separable Hubble parameter we derive analytic expressions for the relevant quantities in the two-field case, valid beyond slow variation. We find that non-trivial sound speeds can, in principle, curve the trajectory in such a way that significant local-type non-Gaussianity is produced. Deviations from slow variation, such as rapidly varying sound speeds, enhance this effect. To illustrate our results we consider two-field inflation in the tip regions of two warped throats and find large local-type non-Gaussianity produced towards the end of the inflationary process.Comment: 30 pages, 7 figures; typos corrected, references added, accepted for publication in JCA

    Coincident Measurement of the Energy Spectra of Doppler-Shifted Annihilation Gamma Quanta and Positron-Induced Secondary Electrons

    Full text link
    Preliminary results are presented from a new positron beam system currently under development at the University of Texas at Arlington for the coincident energy measurement of Doppler-shifted annihilation quanta and positron-induced Auger electrons. We report data based on an analysis of the pulses resulting from the detection of positron induced secondary electrons by a micro-channel plate detector in coincidence with the pulses resulting from the detection of associated annihilation gamma rays in a NaI(Tl) gamma detector.Comment: Presented at 18th International Conference on Positron Annihilation, August 19-24, 2018 | Orlando, USA. The following article has been accepted by AIP Conference Proceedings. After it is published, it will be found at https://aip.scitation.org/journal/ap
    • …
    corecore