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Abstract. We study inflationary perturbations in multiple-field models, for which ζ typically

evolves until all isocurvature modes decay—the “adiabatic limit”. We use numerical methods

to explore the sensitivity of the local-shape bispectrum to the process by which this limit is

achieved, finding an appreciable dependence on model-specific data such as the time at which

slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential

where the isocurvature modes decay before the end of the slow-roll phase we give an analytic

criterion for the asymptotic value of fNL to be large. Other examples can be constructed

using a waterfall field to terminate inflation while fNL is transiently large, caused by descent

from a ridge or convergence into a valley. We show that these two types of evolution are

distinguished by the sign of the bispectrum, and give approximate expressions for the peak

fNL.
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1 Introduction

In single-field inflation with canonical kinetic terms, the curvature perturbation produced

at horizon crossing is conserved with nearly Gaussian statistics [1, 2]. Multiple-field models

support a richer phenomenology, driven by a flow of power from isocurvature modes into the

curvature perturbation. This flow is sourced dynamically, and where only canonical kinetic

terms are present the dynamics are determined by the potential. Therefore, there is some

hope that we may use one to learn about the other.

How much information could be extracted? A general potential is a complicated land-

scape, and it is unlikely that observations will be sufficient to single out a specific shape. But

by piecing together clues from dynamical evolution it may be possible to obtain information

about the topography of the landscape in our local neighbourhood. This is a form of potential

reconstruction [3–5].

Sensitivity to dynamical effects is helpful when distinguishing observational outcomes.

Unfortunately, it complicates the task of extracting predictions. In principle, the statistics

of the curvature perturbation should be tracked until the time of last scattering—where the

microwave background anisotropy was imprinted—and in our present state of ignorance this

is an impossible undertaking. Therefore, to connect the physics of inflation with observation,

we must rely on conservation: if the isocurvature modes are exhausted, quenching the flow

of power into the curvature perturbation, it will cease to evolve. It is the statistics which

apply at the onset of conservation which will be inherited by observable quantities.

This point of view was developed soon after multiple-field models entered the litera-

ture [6]. For practical purposes we require a characterization of the conditions under which ζ

becomes constant. In the absence of isocurvature modes, conservation of ζ was demonstrated

by Rigopoulos & Shellard [7], Lyth, Malik & Sasaki [1] and later Langlois & Vernizzi [8–12]

using a gradient expansion. Christopherson & Malik extended these results to models in

which the Lagrangian can be an arbitrary Lorentz-invariant function of the scalar field and

its first derivatives [13]. More recently, Naruko & Sasaki and Gao [14, 15] applied simi-

lar arguments to higher-derivative models which preserve second-derivative field equations,

where conservation can be subtle [16, 17]. Weinberg developed a different approach [18–21],

adapting the techniques of Goldstone’s theorem to show that ζ would become massless on

superhorizon scales, admitting a time-independent solution. Whether this solution is selected

is a model-dependent question.

The statistics of ζ are fossilized in the radiation fluid at last scattering, and its two-

point correlations have been studied since their presence was confirmed by cobe [22, 23].

More recently, sophisticated Cosmic Microwave Background (cmb) experiments have raised

the possibility that three- and higher n-point correlations may be detectable [24, 25]. These

correlations are interesting because, in principle, they are sensitive probes of physical pro-

cesses and dynamical conditions in the early universe [2, 26–29]. But precisely because of

these desirable properties, such observables carry an unavoidable risk: they may be equally

sensitive to subsequent dynamics, including the process by which ζ becomes conserved. We

may learn important physics from studying the details of this process—but it need have little

to do with our theories of the very early universe, and if we wish to use n-point correlations to
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study these theories then we should proceed with caution. For this reason it is important to

understand which predictions of early-universe models can be connected reliably to late-time

observations.

Our imprecise knowledge of physics above the TeV frontier means it is not possible to

give a complete answer. In this paper we pursue a more modest objective. Focusing on three-

point correlations—with amplitude measured by fNL [24]—and considering models where the

flow of power from isocurvature modes is quenched at or near the end of inflation, we study

how the asymptotic value of fNL depends on the process by which the isocurvature modes

become exhausted. We refer to this exhausted state as the adiabatic limit. Our arguments

are phrased in terms of three-point correlations, but many of our conclusions are general and

apply to arbitrary n-point functions including the two-point function.

Classification of models. We restrict attention to models where a significant fNL is

generated dynamically by inflation. This excludes examples such as the curvaton [30, 31]

or modulated reheating [32, 33] which rely on an inflationary seed perturbation but amplify

it by a noninflationary mechanism. If we disallow noncanonical kinetic terms, Maldacena’s

result guarantees that the models of interest must include two or more dynamically relevant

fields [2].

Under these conditions, field fluctuations are generated at horizon crossing with almost

Gaussian statistics [34–36]. However, unlike single-field inflation, these perturbations may

cause spatially separated regions of the universe to experience different expansion histories.

The set of phase space trajectories associated with an ensemble of such regions is initially a

narrowly collimated bundle whose ‘width’ is set by quantum scatter. (We give details in §2.)
The curvature perturbation is a precise measure of the relative expansion between spatial

patches. Therefore its evolution is a consequence of focusing or defocusing of the bundle:

as nearby patches of the universe evolve towards or away from each other in phase space,

they experience varying expansion rates. In the adiabatic limit, the bundle degenerates to a

caustic. Its width shrinks to zero, and all trajectories converge to a single line.

When does convergence occur? The answer is model-dependent, but we can recognize

broad classes of behaviour.

• The potential may contain a focusing region, which enables trajectories to converge

‘naturally.’ If inflation ends in the vicinity of this region, an adiabatic limit is automatic.

Examples include Nflation and related models [37–43]. However, one is always free to

build models in which the adiabatic limit is achieved differently, perhaps by a waterfall

transition. If the ‘natural’ limit is employed, there are two relevant questions.

First, is the limit achieved before the end of inflation? If so, it is not necessary to

specify details of the subsequent phases. Otherwise, we must choose among the various

scenarios for reheating and later dynamics, and the predictions of the model may depend

on our choice.

Second, in the case where an adiabatic limit is reached during inflation, does this occur

before the slow-roll approximation fails? This raises no issues of principle, but may
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influence how one chooses to study the model; for example, numerical methods may be

required. We will return to this question in §5.

• Alternatively, there may be no natural means by which trajectories converge. In such

models there is no alternative: the inflationary model does not make unambiguous

predictions by itself, but only when embedded in a larger scenario which determines at

least the mechanism by which inflation ends and the universe reheats.

None of these observations are new, but their application to non-Gaussian statistics has yet

to be studied in detail.

Accepting the separate universe principle, to be discussed in §2 below, one obtains ex-

plicit expressions for the n-point functions of the curvature perturbation [28] which automat-

ically respect these conclusions. Therefore, concrete predictions can be obtained whenever it

is possible to calculate these expressions accurately until the onset of conservation. However,

in many cases this ideal procedure is impossible or impractical. Working in a special class of

models where the potential is separable, Meyers & Sivanandam [44, 45] argued that the con-

nected n-point correlation functions would be damped towards slow-roll suppressed values.

Our analysis is closely related, but we argue that the value achieved in the adiabatic limit

need not be especially small [43]. Indeed, in some cases, the adiabatic limit is associated

with growth towards the asymptotic value, rather than decay.

Objectives. In this paper we apply these ideas to the primordial bispectrum, and its

amplitude fNL in the squeezed limit. There are three principal objectives. First, we illustrate

that local fNL can be sensitive to details of when and how the adiabatic limit is reached.

Using examples, we demonstrate that—even in models where convergence occurs naturally—

fNL may depend on the details of this process. Second, the calculations necessary to obtain

a precise estimate of fNL can be technical, perhaps requiring recourse to numerical methods.

For some models, simple techniques exist which allow a qualitative estimate of the evolution

and asymptotic value of fNL. We outline these methods and apply them to simple examples.

Third, we use numerical methods to perform a detailed study of the evolution of fNL in a

selection of models. By themselves these calculations already reveal interesting patterns of

behaviour, but also provide guidance regarding the asymptotics of models where an adiabatic

limit is reached only through the intervention of post-inflationary dynamics.

Outline. The plan of the paper is as follows. In §2 we discuss the separate universe ap-

proach to perturbation theory in phase space, and the δN formalism. In §3 we discuss

mechanisms for generating large evolving local non-Gaussianity, and estimates for the maxi-

mum value and its dependence on initial conditions. §4 includes a brief account of analytic

expressions for estimating fNL, and discusses conditions necessary for this value to be large.

§5 reports a detailed numerical study of fNL in a selection of models with two or more fields.

We conclude in §6. An Appendix contains details of some analytic calculations.

– 3 –



2 Phase space description of slow-roll inflation

Consider inflation driven by multiple canonical scalar fields φi (where i = 1, 2, . . . , Nf), self-

interacting through a potential W (φi). Defining W,i = ∂W/∂φi, the scalar equations of

motion are

φ̈i + 3Hφ̇i +W,i = 0. (2.1)

Inflation occurs when ǫ ≡ −Ḣ/H2 < 1. Eq. (2.1) generates a 2Nf -dimensional phase space

Π. In the “slow-roll” limit where ǫ ≪ 1 there is a dynamical attractor, allowing the decaying

mode to be discarded and restricting evolution to an Nf -dimensional submanifold Π′ on which

(for example) the φ̇i are determined in terms of the φi. The growing mode on Π′ satisfies

3Hφ̇i + W,i = 0. In the slow-roll limit it is possible to write ǫ as a sum of independent

contributions from each field, yielding ǫ =
∑

i ǫi +O(ǫ2i ), where the ǫi satisfy

ǫi ≡
M2

P

2

(

W,i

W

)2

. (2.2)

In simple models it may happen that the matrix ηij ≡ M2
PW,ij/W also has small components

|ηij | ≪ 1.

Density fluctuations are generated by the inflationary background and can be measured

by the curvature perturbation on uniform density spatial hypersurfaces, denoted ζ. For

cosmological purposes its statistical properties are characterized by low-order correlation

functions, of which the first two are

〈ζk1
ζk2

〉 ≡ (2π)3δ(k1 + k2)P (k1), (2.3a)

〈ζk1
ζk2

ζk3
〉 ≡ (2π)3δ(k1 + k2 + k3)B(k1, k2, k3). (2.3b)

The amplitude of the three-point function is usually measured in terms of a momentum-

dependent parameter fNL, satisfying

6

5
fNL(k1, k2, k3) =

B(k1, k2, k3)
∑

i<j P (ki)P (kj)
. (2.4)

where i, j ∈ {1, 2, 3}. The problem at hand is to calculate fNL.

Bundles of trajectories. A comoving scale k is outside the horizon when k/aH < 1,

where a is the scale factor and H ≡ ȧ/a is the Hubble parameter. An overdot denotes a

derivative with respect to time. During inflation H is approximately constant, whereas a

is growing rapidly. Therefore k/aH rapidly becomes negligible a few e-folds after horizon

crossing. Smoothing over a comoving scale somewhat larger than (aH)−1, widely separated

spatial patches will locally evolve like an unperturbed universe up to small corrections. This

is the separate universe picture [46–48].

An ensemble of smoothed regions picks out a collection of trajectories in phase space.

If the ensemble is drawn from a spacetime region of finite comoving extent L then we can
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expect this collection to be narrowly collimated provided L is not too large.1 We refer to

this ensemble of clustered trajectories as a bundle. When making predictions for microwave

background scales it may contain of order 106 trajectories or more [55]. In practice the

analysis is simplified by working in a thermodynamic limit where the bundle formally contains

an infinite number of trajectories. To avoid spurious infrared problems we should demand

that these reheat almost surely in the same vacuum.

The isocurvature modes label Fermi normal coordinates on Π′, adapted to the bundle.

Each isocurvature field s has equation of motion ṡ = 0 and constitutes a conserved quantity

[6, 56]. Together, these conserved quantities identify a trajectory. A particular location

on each trajectory is specified by the integrated expansion N ∼ ln a(t). This ‘trajectory’

approach can be traced to Hawking’s formulation of perturbation theory [57], and was applied

to inflation by several authors [46, 58–60]. An explicit description in terms of trajectories on

Π′ was given by Salopek [56] and Garćıa-Bellido &Wands [6]. Locally, N and the isocurvature

fields generate a coordinate chart on Π′. Fluctuations along the same trajectory generate

the adiabatic mode, ζ = δN . Isocurvature modes represent fluctuations between trajectories.

In an Nf -field model, the reduced phase space supports Nf − 1 isocurvature modes.

Bundle sections. Consider a foliation of Π′ by submanifolds which are nowhere tangent

to the bundle. An important example is foliation by surfaces of fixed energy density. We may

use any such foliation to replace N as a label for length along the trajectories. Intersecting the

bundle with an individual hypersurface generates a cross-section with coordinates inherited

from the isocurvature modes. For example, working on uniform density hypersurfaces, the

scalar fields take values φc
i . These “coordinates” are not independent but are subject to the

constraint dW (φc
i ) = 0, leaving the expected Nf − 1 isocurvature labels.

If the bundle has degenerated to a caustic then each hypersurface intersects the bundle at

a unique point φc
i . Making a small change of trajectory δφ∗

j earlier in the bundle’s evolution,

one will observe no change in φc
i . Therefore δφ

c
i = 0 and we conclude ∂φc

i/∂φ
∗

j = 0. One can

regard this as a requirement that physical predictions computed from statistical properties

of the bundle become independent of its initial conditions. Speaking loosely, we describe this

behaviour as an “attractor.” The attracting trajectory is the caustic, and we will sometimes

refer to it as the limiting trajectory. An ensemble of smoothed patches traversing the limiting

trajectory differ only by their relative position within it, making ζ conserved.

This argument identifies regions where ∂φc
i/∂φ

∗

j → 0 with regions where ζ is conserved.2

We describe it as the adiabatic limit. In what follows we will see that estimates of the decay

rate of ∂φc
i/∂φ

∗

j play an important role in analysing the adiabatic limit. As an example,

consider the purely scalar dynamics associated with slow-roll inflation. A common type

of limiting trajectory lies on a valley floor in the landscape generated by the potential.

1Comoving quantities such as L are not physical, and can not appear in predictions for observable quantities

[49]. The discussion in this paper is independent of L, but as a point of principle L should be removed from

physical quantities by supplying a distribution function for the large-scale modes [50–52]. After doing so, all

predictions depend only on physical scales. Similar conclusions have been obtained by a number of different

methods [53, 54].
2The condition that ∂φc

i/∂φ
∗

j → 0 is sufficient to show that that ζ becomes conserved within the separate

universe picture, but this argument does not demonstrate that it is necessary.
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Descending into the valley, the mass-squared matrix associated with perturbations orthogonal

to the direction of motion should be nondegenerate, with all eigenvalues large and positive.

Taking the smallest eigenvalue of magnitude ∼ m⊥ one will generically find ∂φc
i/∂φ

∗

j ∼
e−m2

⊥
N/3H2

. We will discuss this example more carefully in §4.

Bundle averages. These principles give a procedure to determine the statistics of ζ in

an adiabatic limit. One uses the bundle of trajectories to determine any required n-point

correlation functions, and then imposes the requirement ∂φc
i/∂φ

∗

j → 0. Unfortunately there

is no unique way to do so. Different approaches to the limit correspond to different focusing

mechanisms. As we have explained, focusing regions may occur naturally in some models;

the examples studied by Meyers & Sivanandam [44, 45] are of this type. But whether or not

a model naturally contains an adiabatic limit we may usually elect to impose a different one,

perhaps by enlarging the field content to include a waterfall transition. We will study some

possibilities below.

It is first necessary to obtain the relevant correlation functions. When the slow-roll

attractor is operative, the e-foldings along each trajectory can be expressed as a function of

its initial conditions. Therefore N = N(φ∗

i ). Expanding in the neighbourhood of a fiducial

trajectory yields

ζ ≡ δN =
∑

i

N,iδφ
∗

i +
1

2

∑

i,j

N,ijδφ
∗

i δφ
∗

j + · · · , (2.5)

where N,i ≡ ∂N/∂φ∗

i and N,ij ≡ ∂2N/∂φ∗

i ∂φ
∗

j . The δφ
∗

i measure deviations from the fiducial

trajectory, and will typically be of order the quantum scatter. After restriction to connected

correlation functions there is no dependence on the arbitrary choice of fiducial trajectory.

Eq. (2.5) enables the low-order correlation functions to be expressed in terms of the

data N,i, N,ij , which can be computed in some models [39, 44, 61]. One finds 〈ζζ〉 =

N,iN,j〈δφiδφj〉∗, which determines the power spectrum (2.3a). Similarly, fNL can be written3

[28]

fNL =
5

6

∑

i,j N,iN,jN,ij
(

∑

i N
2
,i

)2 . (2.6)

3 Transitory behaviour of fNL

It was explained in §§1–2 that our interest lies in adiabatic regions where all isocurvature

modes are exhausted, preventing further evolution of ζ. This limit need not be achieved

smoothly. For example, in hybrid scenarios the inflationary phase is suddenly destabilized by

a waterfall transition, leading to abrupt convergence of trajectories. Although a convincing

demonstration has not yet been given, in some circumstances the subsequent dynamics may

preserve the value of fNL at the waterfall. This strategy has been invoked by various authors

[63–66]. Some fine-tuning would be required to arrange |fNL| ≫ 1 at the transition point.

Nevertheless, in these scenarios and others it may be misleading to focus exclusively on

regions where phase space trajectories naturally converge. For this reason we pause to study

3We are neglecting intrinsic non-Gaussianities of the δφ∗

i . For slow-roll inflation with canonical kinetic

terms these are negligible whenever fNL is large enough to be observable [39, 62].
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the qualitative evolution of fNL, whether or not we are close to an adiabatic region. We focus

on scenarios where its value changes rapidly, before returning to focusing regions in §4.
Under which circumstances should we expect the moments of the distribution function

to change significantly? The distribution function describes how trajectories cluster around

the core of the bundle. It is conserved under linear evolution, but is sheared or distorted

on curved paths [67, 68]. These effects reshape the distribution function: even when it is

initially Gaussian we expect probability to be relocated from the core to the outer layers of

the bundle. This is associated with the generation of significant third- or higher nth-order

moments.

Curved paths can be generated by many choices of microphysics. We study only an

especially simple mechanism. Where the potential’s topography includes a ridge or valley we

will encounter curved trajectories diverging from the ridge or converging into the valley floor.

Examples of such trajectories have been studied by a number of authors [40, 65, 66, 69].

3.1 Ridges: Diverging trajectories

We restrict attention to two-field models, which already capture the principal dynamical

features, and label Π′ by coordinates φ and χ. We assume a “ridge” or separatrix at χ = 0.

In the neighbourhood of an arbitrary point (φ0, 0) on the ridge the potential will generically

have the form W ≈ W0+g0(φ−φ0)− 1
2m

2
χχ

2. The mass-squared m2
χ is positive, and omitted

terms are higher-order in φ − φ0 and χ. These become relevant at some point after the

trajectory has been ejected from the vicinity of χ = 0. The trajectory χ = 0 is classically

stable, although depopulated by quantum fluctuations [70–74].

Trajectories. Measuring length along each trajectory by the energy density, the evolution

equations are

1

3M2
P

dφ

d(H2)
=

g0
g20 + (m2

χχ)
2
, (3.1a)

− 1

3M2
P

dχ

d(H2)
=

m2
χχ

g20 + (m2
χχ)

2
. (3.1b)

According to (3.1b), a trajectory emanating from (H∗, χ∗) and evolving to (Hc, χc) satisfies

m2
χ

2
(χ2

c − χ2
∗) +

g20
m2

χ

ln
χc

χ∗

= 3M2
P(H

2
∗ −H2

c ). (3.2)

If |χc| . |g|/m2
χ then the logarithm dominates and the trajectories disperse linearly in the

sense χc = χ∗D, where the growth factor D satisfies D ≡ eβ(H
2
∗−H2

c ) and β ≡ 3(MPmχ/g0)
2.

Nonlinear dispersion occurs in the region |χc| & |g0|/m2
χ where the quadratic term dominates.

The transition between the two is the “turn,” beyond which each trajectory is ejected from

the ridge and rapidly evolves to |χc| ≫ |g0|/m2
χ. At the turn we have

|χturn| ∼
|g0|
m2

χ

, (3.3)

which makes the kinetic energy in each field roughly equal, |φ̇turn| ≈ |χ̇turn|.
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This leads to the following physical picture. Trajectories which are still close to the

ridge preserve their initial Gaussian profile. Trajectories populating the downhill-edge of the

bundle quickly slide away, generating a heavy tail at large |χc|. In this region kinetic energy

has greater relative importance, slowing the expansion rate and enhancing the frequency of

excursions to large negative δN . Therefore this mechanism will generate negative fNL from

a Gaussian distribution.

Whether a large negative amplitude is achieved in practice depends on the initial distri-

bution of trajectories within the bundle, the nonlinear relation between the fields and ζ, and

for how long the mechanism operates. Sufficiently far down the ridge the trajectories depend

on the completion of W . Therefore, the approach to an adiabatic limit cannot be described

by the techniques of this section.

δN analysis. We now translate to ζ and repeat the analysis in the language of the δN

method [28]. Consider two trajectories originating well before the critical turning point,

but initially separated by a distance (δφ∗, δχ∗). It is useful to define δ ≡ m2
χ|χ/g0|, where

δ∗ ≪ 1 indicates the initial point is very close to the ridge. In this region surfaces of constant

energy density in Π′ practically coincide with surfaces of constant φ. Therefore, to bring this

pair of trajectories to a common energy density H = H∗ requires a small excess expansion

δN ≈ (2ǫ∗φ)
−1/2δφ∗/MP. The subsequent expansion history, measured to a surface H = Hc,

can be written N = N(Hc;H∗, χ∗).

In what follows we work without loss of generality on the positive branch χ > 0, and

suppose φ − φ0 and χ remain sufficiently small that higher-order terms in the potential do

not become relevant. Once this assumption fails, φ̇ may acquire a nonnegligible dependence

on χ∗, potentially invalidating our conclusions. Passing to the limit where δφ∗ and δχ∗

become infinitesimal, we conclude that on arrival atH = Hc the trajectories have experienced

expansion histories which differ by

dN ≈ 3H2
∗

g0
dφ∗ + 18m4

χM
2
P dχ∗

∫ H2
c

H2
∗

H2 d(H2)

[g20 + (m2
χχ)

2]2
χ

(

∂χ

∂χ∗

)

H∗

, (3.4)

where the partial derivative is to be evaluated at constant H∗ and χ = χ(H).

Invoking the chain rule, Eq. (3.4) determines all derivatives of N . We find

N,χχ = 18m4
χM

2
P

∫ H2
c

H2
∗

H2 d(H2)

[g20 + (m2
χχ)

2]2

[

g20 − 3(m2
χχ)

2

g20 + (m2
χχ)

2

(

∂χ

∂χ∗

)2

H∗

+ χ

(

∂2χ

∂χ2
∗

)

H∗

]

. (3.5)

So far our considerations have been general. Prior to the turn, Eq. (3.2) makes ∂2χ/∂χ2
∗

negligible whereas ∂χ/∂χ∗ ≈ χ/χ∗ is exponentially growing. In this region our assumptions

make the integrands of Eqs. (3.4) and (3.5) positive, and therefore both N,χ and N,χχ are

negative and decreasing.

If mχ is not too small, the integrals of (3.4) and (3.5) are dominated by their upper

limits—where the exponential growth is maximized. Taking the initial evolution in χ to be

almost negligible, this requires

m2
χ ≫ 3ǫ∗H

2
∗

1− (Hc/H∗)2
≈ 3ǫ∗H

2
∗ , (3.6)
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where the approximate equality applies if Hc is at least a little smaller than H∗. If χ is to

be sufficiently light to acquire a quantum fluctuation then mχ ≪ H∗, and if both conditions

are to be compatible we must require ǫ∗ ≪ 1. A short calculation yields

N,χ ≈ −
3m2

χH
2
c

g20
χ∗

(

χc

χ∗

)2

(3.7a)

N,χχ ≈ N,χ

χ∗

. (3.7b)

This relation between N,χ and N,χχ is a consequence of the exponential growth of χ prior to

the turn.

Initially, N,χ and N,χχ are small in comparison with N,φ and N,φφ. In addition, N,φχ ≈
δ∗/M

2
P is constant and can safely be neglected. Therefore ζ is dominated by the fluctuation

in φ, which is practically Gaussian. Using (2.6), we find

6

5
fNL ≈

[

2ǫ∗ +

(

N,χ

N,φ

)3 m2
χ

3H2
∗

1

δ∗
+O

(N,χ

N,φ
δ∗

)

][

1 +
N2

,χ

N2
,φ

]−2

. (3.8)

While |N,χ| ≪ |N,φ|, the first term dominates and (3.8) gives |fNL| ≈ ǫ∗ < 1. As the trajec-

tory moves away from the ridge the χ∗-derivatives become increasingly important whereas

the φ∗-derivatives are constant. When |N,χ| and |N,φ| are comparable, fNL is dominated by

the second term in (3.8). In virtue of (3.6) and the initial condition δ∗ ≪ 1, this is much

larger than ǫ∗ and causes a spike in fNL. Estimating the peak to occur when N,φ ≈ −N,χ,

we find

fNL|peak ≈ ηχ∗
δ∗

≈ −0.3ǫ
1/2
∗

MP

|χ∗|
, (3.9)

where ηχ ≈ M2
PW,χχ/W is the standard η-parameter associated with χ. In this expression

and similar ones below, including Eq. (3.18), the numerical prefactor is uncertain by an O(1)

quantity which depends on the precise balance between N,φ and N,χ at the peak.

On approach to the spike, Eq. (3.8) predicts that fNL is negative and growing like

(χc/χ∗)
6. Subsequently, χ continues to increase and |N,χ| eventually dominates |N,φ|. In

this region ζ is composed almost entirely of the χ fluctuation. The non-Gaussianity becomes

practically independent of δ∗ and decays like (χc/χ∗)
−2. These estimates of the growth rate

and decay rate are valid before the turn, where χc is growing exponentially as described

below Eq. (3.2).

Dropping numerical factors of order unity and using (3.3) to estimate fNL when the

fiducial trajectory passes the turn, we find

fNL|turn ∼ −
m2

χ

H2
c

≈ ηχ|c . (3.10)

This is much less than Eq. (3.9) and therefore occurs some time after the peak fNL is achieved.

If Eq. (3.10) is not invalidated by higher-order terms in the potential, it implies that the height

of the spike is adjustable independently of fNL on entry or exit. Since the peak fNL occurs

before most trajectories in the bundle reach the turning point (3.3), our analysis will apply

provided these higher-order terms become relevant only after the turn.
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Scaling relations. Eqs. (3.8) and (3.9) give interesting scaling relations for the peak |fNL|,
and for its growth and decay near the spike. Eq. (3.9) suggests that the maximum |fNL|
attained during the spike has a practically universal power-law scaling for any potential

which can be approximated by the coefficients g0 and mχ up to the turn of the trajectories:

for such potentials we should expect |fNL| ∝ |χ∗|−ν with exponent ν ≈ 1. In §5 we will use

numerical methods to study models which exhibit this scaling behaviour.

3.2 Valleys: Converging trajectories

The converse process occurs when a trajectory approaches a valley, where a bundle of trajecto-

ries is nonlinearly focused rather than defocused. As above, we specialize to a two-dimensional

field space labelled by coordinates (φ, χ) and suppose there exists a valley aligned with the

χ direction. In the neighbourhood of the valley we write W ≈ W0 +Wφ +Wχ, where W0 is

a constant and

Wφ =
1

2
m2

φφ
2 (3.11a)

Wχ = g0χ+
1

2
m2

χχ
2. (3.11b)

If mφ & mχ then the slopes will be relatively steep in comparison with the valley floor.

Omitted terms are higher order in φ and χ, but become increasingly irrelevant as φ, χ → 0.

Sufficiently far from φ = 0 the motion is almost entirely in the φ direction.

During descent into the valley, trajectories populating the uphill edge of the bundle

experience a larger velocity in the orthogonal χ direction compared to those lower down the

slope. Therefore the uphill edge is compressed towards the centroid, generating a nonlinear

distribution. The tail of the distribution is again on the downhill side, but in this case the

tail has lower kinetic energy and enhances the frequency of excursions to a large positive δN .

Therefore this mechanism generates a positive fNL.

δN analysis. The evolution equations are

1

3M2
P

dφ

d(H2)
=

W ′

φ

(W ′

φ)
2 + (W ′

χ)
2
, (3.12a)

1

3M2
P

dχ

d(H2)
=

W ′
χ

(W ′

φ)
2 + (W ′

χ)
2
. (3.12b)

In analogy with the ridge case, it is helpful to define a dimensionless measure of distance, δ,

from the valley floor. We choose δ ≡ W ′

φ/W
′
χ, which measures the relative partition of kinetic

energy between the fields. Our analysis applies when the trajectories begin from an initial

position sufficiently high above the valley, where δ∗ ≫ 1 and only the φ-field is in motion. In

this regime, Eqs. (3.12a)–(3.12b) can be integrated to find

φ2
c

φ2
∗

= 1 +
6M2

P

m2
φ

H2
c −H2

∗

φ2
∗

(3.13a)

χc +
g0
m2

χ

=

(

χ∗ +
g0
m2

χ

)(

φc

φ∗

)m2
χ/m

2

φ

(3.13b)
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up to corrections of relative magnitude 1/δ2. Eqs. (3.13a)–(3.13b) cease to be a good approx-

imation no later than δ ∼ 1, when φ̇ ∼ χ̇ and the kinetic energy in each field is approximately

equal. In typical models this occurs at the turn.

For δ ≫ 1, surfaces of constant energy density are practically aligned with surfaces of

constant φ. Adopting the methods of §3.1, we bring a pair of nearby trajectories separated

by the displacement (δφ∗, δχ∗) to a common value of H, and write the number of e-foldings

to a subsequent surface of constant energy density Hc as N = N(Hc;H∗, χ∗). Passing to

the limit of infinitesimal δφ∗ and δχ∗, and using Eqs. (3.13a)–(3.13b), we conclude that on

arrival at H = Hc, the trajectories have experienced expansion histories which differ by

dN ≈ 3H2
∗

m2
φφ∗

dφ∗ − 18
M2

P

m4
φ

φ∗

δ∗
dχ∗

∫ H2
c

H2
∗

H2 d(H2)

φ4

{

1− µ

(

φ2

φ2
∗

)µ}

, (3.14)

where φ is to be understood as a function of H and we have introduced the mass ratio

µ ≡ m2
χ/m

2
φ < 1. Corrections to Eq. (3.14) are suppressed by 1/δ2.

Eq. (3.14) reproduces many features of the ridge analysis. The derivative N,φ is constant,

whereas |N,χ| is initially zero but growing. Performing the integral, we find

N,χ =
1

2δ∗

φ∗

M2
P

Φ
(φ2

φ2
∗

)

, (3.15)

where the “growth factor” Φ(x) satisfies

Φ(x) ≡ − lnx+ (xµ − 1) +
W0

Wφ∗
(x−1 − 1) +

W0

Wφ∗

µ

µ− 1
(xµ−1 − 1). (3.16)

We have assumed W0 dominates W∗, but the generalization to other cases is straightforward.

At x = 1 we have Φ(1) = 0. For x < 1 the dominant growing term depends on microphysical

details of the model. Under our assumption W0 ≫ Wφ∗ the dominant growth is initially from

x−1. Inflation will not end naturally in a model of this type, so some other exit mechanism

must be invoked. We will see examples of this kind in §5. On the other hand, if W0/Wφ∗ . 1

the logarithm will initially dominate. In either case, the asymptotic growth in the limit x ≪ 1

is from x−1. Therefore, for a typical model Φ(x) is a complicated function determined by a

competition for dominance between the various terms. However, remarkably, in many cases

the behaviour of fNL is almost independent of these complicated microscopic details.

Differentiating (3.15), we find

N,χχ =

{

µδ∗ +
2

δ∗
∆
(φ2

φ2
∗

)

}

N,χ

φ∗

, (3.17)

where ∆(x) ≡ (x − 1) d ln Φ(x)/dx. Eq. (3.16) implies that ∆ is growing as φ decreases to

zero. While |N,χ| is increasing towards |N,φ| we find fNL increases, achieving a maximum

value when |N,χ| ∼ |N,φ|. First, suppose the ∆-dependent term is subdominant at this time,

which implies ∆ . µδ2∗ . We find

fNL|peak ∼ ηχ∗δ∗ ≈ 0.3ǫ
1/2
∗

m2
χMP

g +m2
χ|χ∗|

. (3.18)
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which is independent of the growth rate (3.16) and the mass ratio µ. In this sense, the

maximum value (3.18) is a “universal” phenomenon. When |N,χ| > |N,φ| we find that fNL

decays like Φ−1, at least until ∆ ∼ µδ2∗ , when it may stabilize as we will explain below.

In analogy with the ridge, this sequence of growth and decay gives rise to a spike in fNL.

Ultimately φ/φ∗ will decrease until δ ∼ 1, and the subsequent behaviour of fNL must be

determined by different methods, such as those described in §4. Written in terms of the

dimensionless measure δ, Eq. (3.18) coincides with (3.9) with the identification δvalley =

1/δridge. In this language, the sign of fNL is inherited from the sign of ηχ.

Second, consider the “nonuniversal” case where the ∆-dependent term dominates (3.17).

In this case, fNL increases until |N,χ| ∼ |N,φ|, achieving a value larger than (3.18). Its precise

value is set by the ratio ∆/δ∗, and may depend on details of the potential, including the mass

ratio. When |N,χ| > |N,φ| the time dependence of fNL is set by ∆/Φ. Its precise scaling

depends on the dominant term in Φ. In particular, if Φ ∼ x−1 then ∆/Φ is approximately

constant and fNL does not decay. In such cases, fNL exhibits a plateau and it may no longer

make sense to speak of a spike at all. After the turn is completed, the nonlinear deformation

of the bundle will partially relax, leading to decay of |N,χχ|. The precise details, including the

decay rate, are model-dependent. Eventually the fields reach equipartition of kinetic energy

and this analysis breaks down.

4 Asymptotic behaviour of fNL

Whether a large |fNL| can be generated during an epoch of slow-roll inflation—perhaps from

the “spike” mechanisms described above—is irrelevant unless it can be preserved in some

adiabatic limit. The methods of §3 are insufficient to resolve this question.

The potential may be such that a focusing region is naturally available. If inflation

terminates in this region then the transitory evolution of fNL studied in §3 has no necessary

connection with its final asymptotic value. In certain circumstances, where the focusing

region can be analysed in detail, a relatively simple statement is possible. These are the

scenarios studied by Meyers & Sivanandam [44, 45]. One might have thought that the final

fNL would depend only on the local shape of the potential in the focusing region, which

will typically be a stable parabolic minimum. If so, the asymptotic value of fNL would be

universal among all potentials sharing a similarly-shaped minimum. However, this is not the

case. As we will explain, the asymptotic value of fNL generally depends on properties of the

potential far from the focusing region.

If multiple focusing regions are available, one must be selected by a combination of

dynamics and initial conditions. To determine which possibility should be expected by late-

time observers who map the anisotropy of the cmb requires an understanding of the infrared

structure of the entire inflating volume [50]. This difficult “measure problem” remains un-

solved.

If a natural focusing region is not available, or is not selected, then one must be imposed

and the entire analysis becomes significantly more complicated. In this case the transitory

evolution studied in §3 may become relevant. We will have little to say about this possibility,

although we investigate some numerical cases in §5.
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Natural focusing. In this section, we study models where inflation ends in a region of the

potential where the trajectories are naturally focused. Broadly speaking, two possibilities

exist.

• The asymptotic value of fNL generated during focusing may be unobservably small,

erasing any transiently large non-Gaussianity generated by spikes or other features.

This possibility was emphasized by Meyers & Sivanandam [44, 45], who worked with

a particular class of separable Nf -field models to be discussed below. However, other

possibilities exist.

• It may be possible to make the focusing process itself generate a large fNL by suitable

choice of W . An example of such a model was given by Kim et al. [43]. (Indeed, in this

model, fNL grows sharply during approach to the adiabatic limit.)

In principle, the behaviour of fNL in a focusing region could be determined from (2.5)–(2.6)

by imposing the limit ∂φc
i/∂φ

∗

j → 0. Unfortunately, it is not known how to compute the “δN

coefficients” N,i and N,ij for an arbitrary model. Therefore a systematic discussion of this

limit must apparently await future analytic developments.

Explicit expressions for the δN cofficients are known only in very restricted circum-

stances. Formulae for quadratic potentials were discussed by Lyth & Rodŕıguez [28], Lyth

& Alabidi [38] and Alabidi [40]. Later, Vernizzi & Wands [39] and Battefeld & Easther [75]

gave expressions for an arbitrary sum-separable potential. Taking W =
∑

i Vi(φi), one finds

N,i =
1

M2
P

(

Vi

V ′

i

∣

∣

∣

∣

∗

−
∑

k

Vk

V ′

k

∣

∣

∣

∣

c

∂φc
k

∂φ∗

i

)

, (4.1)

where ∂φc
k/∂φ

∗

i satisfies

∂φc
k

∂φ∗

i

= −Wc

W∗

√

ǫck
ǫ∗i

(

ǫci
ǫc

− δik

)

. (4.2)

A similar expression for a product-separable potential W =
∏

i Vi(φi) was obtained by Choi

et al. [76]. Comparable results for a general class of sum- and product-type potentials were

given by Wang [61] and are summarized in the Appendix. It is also possible to take the

Hubble rate to be separable rather than the potential [77, 78].

Focusing in a valley. A typical example of a focusing region is a valley of the potential

landscape, perhaps terminating in a local minimum. For Nf fields, there are at least Nf −
1 heavy directions with masses greater than the Hubble rate. Quantum fluctuations are

suppressed in these directions, which prevent the bundle from diffusing up the sides of the

valley. The steep slopes cause exponential convergence, and rapidly focus the bundle to a

line.

In the neighbourhood of the valley floor, we assume it is possible to choose coordinates

on field space for which the potential approximately separates

W ≈ Vϕ(ϕ) +
∑

α

Vα(sα) ≈ Vϕ(ϕ) +
1

2

∑

α

m2
αs

2
α (4.3)
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where ϕ labels distance along the valley floor—which may be a light direction—and the Nf−1

fields sα are stabilized with masses mα = V ′′
α & H. By a suitable choice of coordinates we can

arrange that 〈sα〉 = 0. To describe a complicated valley it may be necessary to glue several

such regions together. Focusing on the particular region described by (4.3), we denote the

field values on entry to its domain of validity ϕ̄ and s̄α. These will be functions of the initial

fields φ∗

i . This initial point could generically occur far from the valley, where (4.3) need not

be a good approximation.

The heavy fields sα evolve according to 3Hṡα = −m2
αsα. After N e-foldings from the

point of entry, one finds

sα = s̄α(φ
∗

i )e
−

∫N

0
ηα(N ′) dN ′

. (4.4)

The total number of e-folds available within the valley is model-dependent. In a long valley

the focusing may practically go to completion, making sα effectively zero. Alternatively, if

the valley rapidly terminates in a local minimum there may be insufficient time to focus the

bundle completely.

The fields φk can be written as linear combinations of ϕ and the sα, giving φk =

γkϕ+
∑

α β
α
k sα. The γk and βα

k are constants, which depend only on the choice of separable

coordinates used in (4.3). They are independent of the entry point (ϕ̄, s̄α), which implies

∂φc
k

∂φ∗

j

=
∑

α

(

βα
k − γk

V ′
α
c

V ′
ϕ
c

)

∂scα
∂φ∗

j

. (4.5)

Therefore ∂φc
k/∂φ

∗

j behaves like a linear combination of derivatives ∂scα/∂φ
∗

j .

The number of e-foldings, N c(φ∗), which occur between the entry point (ϕ̄, s̄α) and the

surface c will usually depend on the initial point φ∗. Assuming N c(φ∗) does not exhibit

a dramatic sensitivity to these initial conditions, Eq. (4.4) shows that ∂scα/∂φ
∗

j will decay

exponentially as the trajectory settles into the valley. Potentials may exist which violate this

condition, but we believe it will be satisfied for a majority of trajectories which flow over

reasonably smooth potential landscapes. Where it is satisfied, this estimate of the decay rate

applies once a trajectory has been captured by the focusing region, no matter what form the

potential takes globally.

In Eq. (4.5) the γk term will typically decay exponentially, because V ′c
α ∼ sα whereas

V ′c
ϕ decays less rapidly. Therefore Eq. (4.4) implies the derivatives ∂φc

k/∂φ
∗

j decay at least

as fast as the lightest isocurvature field. We conclude4

∂φc
k

∂φ∗

j

≍ e−
∫N

0
ηs(N ′) dN ′ ≈ e−ηsN , (4.6)

where ηs = min{ηα} and N is the same quantity occuring in Eq. (4.4). The final equality

applies if ηs is approximately constant during the focusing process.

Separable potentials. In a globally sum-separable model, for which N,i satisfies (4.1), it

may happen that (4.6) is sufficiently powerful to make the final “c-term” irrelevant. In these

circumstances the correlation functions of ζ, including the spectrum and bispectrum, can be

4The asymptotic notation x ≍ y indicates that x and y share a common decay rate.
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determined from the remaining term of (4.1), which depends only on boundary data at the

initial time. For correlation functions among fields carrying comparable momenta of order k

this is often taken to be the horizon-crossing time |η| ∼ 1/k, where η is the conformal time.

For this reason, the scheme has sometimes been called the horizon-crossing approximation

[41–43]. Despite the name, we caution that this approximation does not consist of assuming

that the perturbations are constant after horizon-crossing, but rather that their values in the

adiabatic limit can be determined in terms of the shape of the potential there. A similar

procedure can be applied in product-separable cases.

It is less straightforward to estimate the minimum number of e-folds required to make

the c-terms of (4.1) negligible. Although Eq. (4.6) gives information concerning the decay

rate, the number of e-folds required to damp any contribution from the c-terms depends on

their amplitude on entry to the valley. This is a function of each species’ relative contribution

to the energy density of the universe on the initial and final slices c and ∗, from which it

does not appear straightforward to draw general conclusions. However, since the isocurvature

masses should be comfortably heavier than the Hubble scale, the parameter ηs will typically

be much larger than unity. In these circumstances, rather less than O(10) e-foldings are

usually required to accumulate a very substantial suppression of the c-terms.

In the language of Meyers & Sivanandam [44, 45], this damping of the c-terms is precisely

the exponential suppression which they suggested would drive the bi- and trispectrum to slow-

roll suppressed values. In the language of §2 it represents focusing of the bundle to a caustic.

Our analyses are entirely consistent, but it is helpful to recall that the ∗-term in (4.1) need

not be especially small. We briefly comment on this possibility at the end of this section. If

that is the case, suppression of the c-terms can cause the correlation functions to experience

a short phase of exponential growth as they approach their asymptotic values. Note that

all these conclusions depend on the existence of a globally separable potential. We are not

aware of a systematic study of the asymptotics of fNL in more general cases.

One might harbour some reservations that the c-terms do not decay if the fields settle

into a stable minimum, for which Vk/V
′

k diverges. Near an arbitrary point, which can be

chosen as the origin without loss of generality, Vk can be written Vk ≈ A + Bφk and Vk/V
′

k

approaches a constant. Near a minimum, one finds instead Vk ≈ A+Bφ2
i . Therefore

Vk

V ′

k

∂φc
k

∂φ∗

j

≈ A+B (γkϕ
c +

∑

α β
α
k s

c
α)

2

2B
(

γkϕc +
∑

α β
α
k s

c
α

)

∑

ρ

(

βρ
k − γk

V ′
ρ
c

V ′
ϕ
c

)

∂scρ
∂φ∗

j

. (4.7)

If A = 0 the prefactor decays. Since the potential is sum-separable, we may always redefine

all but one Vk to satisfy this condition. However, if the potential is not zero at the minimum

then the remaining Vk must have nonzero A. Eq. (4.7) shows that we should choose the field

φk to have nonzero overlap with the direction of the valley floor, ie., γk 6= 0. Under these

circumstances the right-hand side of (4.7) still decays (although perhaps at a reduced rate),

because by assumption ϕ decays strictly more slowly than any isocurvature mode.

Large non-Gaussianity after natural focusing. Is it possible to obtain large fNL at the

adiabatic limit? Working in a sum-separable potential, the foregoing discussion implies that

the c-dependent terms in (4.1) may be discarded provided enough focusing can be achieved
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before the end of inflation. In general, the conditions required to achieve large fNL may

still be complicated. However, a relatively simple picture emerges if we assume that N,i is

large for one field φ (or at most a few such fields) [43]. Therefore, Vφ/V
′

φ at horizon crossing

dominates the analogous terms for all other fields and fNL can be written

fNL ≈ −5

6
M2

P

V ′′

φ

Vφ

∣

∣

∣

∣

∣

∗

. (4.8)

In a single-field model the quantity V ′′

φ /Vφ would be the inflationary η-parameter. But in

an assisted inflation the total potential may be much larger than Vφ [79, 80]. Therefore ηφ
can remain small, making φ light at horizon crossing and causing it to acquire a quantum

fluctuation by the usual mechanism, while V ′′

φ /Vφ can be appreciable. We study an example

of this type in §5.1.2. In such models the sign of fNL is inherited from an “enhanced” η-

parameter, as in Eqs. (3.9) and (3.18), but unlike these cases the enhancement is measured

by the initial share of the energy density contributed by φ, rather than the parameters δridge,

δvalley. In Eq. (4.8) this enhancement factor is W/Vφ ≫ 1.

If several fields have comparable N,i, their perturbations contribute equally to ζ at the

adiabatic limit and dilute any non-Gaussianity by the same interference effect which leads to

the central limit theorem. Therefore the largest values of fNL will be achieved where a single

field has a dominant N,i.

A similar discussion can be given for product-separable potentials. In this case the

formulas depend solely on one field, labeled φk, which must be the field still evolving at the

adiabatic limit. Therefore fNL ≈ 2ǫ∗k − η∗kk, and a large fNL would require a violation of

slow-roll. We conclude that large |fNL| is not possible at the natural adiabatic limit in this

class of models.

5 Models

The results of §4 show that, even for models where an adiabatic limit can be approached

analytically, numerical calculations may be necessary to determine the degree of focusing

which occurs near the end of inflation. In other cases there is simply no alternative.

In this section, we report the results of numerical simulations and compare the outcome

to the analytic theory developed in §§3–4. In appropriate circumstances we show that the

simplified description of “spikes” obtained in §3 is an accurate match for full numerical

simulations. We give examples where the focusing described in §4 goes to completion—

making the “horizon crossing approximation” highly accurate—and others where it does not.

A case of special interest occurs when the bundle would focus only slightly after the end of

inflation. One might expect that the error in analytic predictions based on the strict adiabatic

limit would be small, but it transpires that fNL can be rather sensitive to the details of the

model. In models where there is no natural adiabatic region, reheating must occur before an

adiabatic limit is reached. In these cases we perform a qualitative study of the dependence

of fNL on the details of the reheating phase.
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Evolution after slow-roll using δN . The phase space description of inflationary trajec-

tories was discussed in §2. During multiple-field slow-roll inflation, each trajectory lies on a

submanifold Π′ of the full phase space.

In a model more general than multiple-field slow-roll inflation, extra coordinates will

typically be required. First, if the slow-roll approximation fails then one must work on the full

phase space Π rather than the attractive submanifold Π′. Therefore new isocurvature modes

are typically required to label the conjugate momenta πi ∼ φ̇i. Second, matter species other

than scalar fields may be included, perhaps to describe a phase of reheating. In such cases,

the full phase space splits into a Cartesian product constructed from the phase space for each

species, and suitable isocurvature modes labelling all these coordinates will be required. For

thermalized radiation, a common choice is the temperature, T .

Several numerical approaches exist to compute the statistics of the density fluctuation

[67–69]. Here we take the simple approach of calculating the derivatives of N using a fi-

nite difference scheme. This requires the slow-roll approximation at horizon crossing, where

initial conditions are set, but not subsequently. We have verified that our results are in-

sensitive to changes in the step size of the finite difference scheme. Although slower than

other approaches [67, 68], direct δN has the advantage of straightforward comparison with

our analytic methods. Moreover, it requires only the evolution of an unperturbed universe,

making a simple description of reheating—assuming thermal equilibrium and a single radi-

ation fluid—easy to implement. These assumptions are at best quasi-realistic, but serve to

indicate a plausible phenomenology.

5.1 Two-field models

5.1.1 Transitory models with interruption

All two-field models documented in the literature which produce large, transient fNL exploit

the spikes described in §3 [40, 65, 66]. Eqs. (3.8) and (3.9) show that to obtain large |fNL|
from a ridge, one must tune the initial conditions so that χ∗/MP ≪ 1. Also, if this large

fNL is to be preserved in the adiabatic limit, Eq. (3.10) implies that some mechanism must

operate to end inflation before the majority of trajectories in the bundle encounter the turn.

In two-field models with separable potentials, the parameter combinations required to ensure

these conditions were given by Byrnes et al. [65]. The observables predicted in such models

depend strongly on the choice of exit mechanism. In certain cases, such as two-field hybrid

inflation, it is possible that fNL is not erased. In other cases this outcome appears unlikely.

Two-field hybrid inflation. This model was studied by Alabidi & Lyth [40] and later by

Byrnes et al. [65, 66]. The potential is

W =
1

2
m2

φφ
2 +

1

2
m2

χχ
2 +

1

2

(

g2φφ
2σ2 + g2χχ

2σ2
)

+
1

4
λ
(

σ2 − v2
)2

(5.1)

where φ and χ are slowly-rolling fields, and σ is a waterfall field which becomes destabilized

when gφ
2φ2 + gχ

2χ2 = λv2. We take the masses mφ and mχ to be positive, and assume

g2φ/g
2
χ = m2

φ/m
2
χ. This ensures that the waterfall occurs at fixed energy density, making it

unnecessary to account for the effect of inflation ending on different hypersurfaces [63, 64, 81,

– 17 –



82]. If the masses are not equal, there is a steep slope in the direction of the more massive

field. The trajectories evolve along this steep direction and then turn towards the global

minimum. We expect some non-Gaussianity to be generated during this process.

In Fig. 1 we plot the evolution of fNL for mφ/mχ = 5, ηφ = 4M2
Pm

2
φ/(λv

4) = 0.08 and

initial conditions χ∗ = 0.001MP, φ∗ = 0.5MP. We adjust the remaining parameters so that

the waterfall occurs when |fNL| > 1 and takes much less than a Hubble time to complete. The

blue dotted line represents the fNL generated by the slow-roll fields, ignoring the waterfall.

If inflation fails to terminate on the spike this leads to a negligible asymptotic bispectrum.

The potential is of ‘valley’ type with g = 0, for which the analysis of §3 explains the positive

spike. Beginning from fNL ∼ ǫ∗ there is rapid growth to a positive peak, followed by a softer

decay. The peak value is well approximated by Eq. (3.18) which yields fNL ≈ 8. By varying

the initial conditions, we have confirmed that the peak value scales approximately as 1/χ∗,
as predicted by (3.18).

The solid red line represents a numerical evolution, terminated by a waterfall transition

on the growing arm of the spike. In the early stages, the numerical results follow the analytic

prediction. We continue the calculation past the end of inflation by allowing the waterfall field

σ to become operative. Care must be taken in modelling this transition. We give the waterfall

field a small value consistent with the typical RMS value expected from quantum mechanical

excitations of a massive field in de Sitter, σRMS ≈ H3/M , where M is representative of

the waterfall mass before the transition. The results are extremely insensitive to its precise

value.5

The hybrid field is heavy at horizon crossing and is therefore unperturbed. Hence,

we need not differentiate N with respect to σ. Using these assumptions, we find that fNL

appears to be conserved through the hybrid transition (see Fig. 1). The numerical evolution

is only continued for a fraction of an e-fold after the transition, during which time fNL does

evolve due to oscillation of the primary fields. However, the resulting oscillations in fNL are

decaying and are centred around a fixed value. This behaviour is apparently generic for a

range of parameter values, provided the transition happens sufficiently rapidly—in less than

an e-fold. One must already impose this “rapid transition” condition to avoid issues with

primordial black holes [83].6

5.1.2 Large non-Gaussianity at the natural adiabatic limit

We illustrate this case using a model closely related to the N -axion model of Kim et al. [43],

in which the potential is taken to be V =
∑

i Λ
4
i (1 − cos 2πf−1

i φi). The sum is taken over

a large number of uncoupled axions, and fi is the decay constant for the ith axion. We will

study further examples of this type in §5.2. In Ref. [43], many axions were invoked to generate

a phase of assisted inflation. Because the potential is sum-separable, the perturbations can

5In reality, this RMS value is made up of many inhomogeneous short scale modes. Their collective evolution

approximates that of a homogeneous mode, at least in the initial stages before the minimum is reached [83].

We expect this approximation captures at least some of the physics which occurs at the hybrid transition.
6Note that when the hybrid transition does not occur on a uniform density hypersurface a significant extra

contribution to fNL can be generated [81, 82]. We have checked a small number of these cases numerically and

find agreement with the formulae given in Ref. [66], although we have only considered examples of positive

curvature rather than ridges.
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Figure 1. Evolution of fNL for the model (5.1) calculated numerically (solid red line) with the hybrid

transition included for the parameter values in the text, the (red) dot-dashed line is added to illustrate

the nearly constant final level of fNL. The (blue) dashed line, represents the analytical evolution, with

no hybrid transition included.

be calculated at the adiabatic limit using (4.1) after dropping the c-term provided inflation

ends when the final field gracefully exits from slow-roll. Whether this occurs depends on the

number of fields and the choice of fi. Taking fi = f < MP for all i and supposing that the

initial conditions are chosen so that only a small number of fields populate the hilltop region

near φi = 0, the asymptotic fNL can be calculated using (4.8). It will typically be moderate

or large.

In this section we study a related two-field model. Dynamically, the large number of

axions which begin away from the hilltop region serve only to source the Hubble rate. The

single field closest to the hilltop sources the non-Gaussianity. (This model has some similarity

to the scenario of Boubekeur & Lyth [84].) Therefore, most of the axions can be replaced by

a single effective field with a quadratic potential, retaining the full cosine only for the axion

closest to the hilltop,

V =
1

2
m2φ2 + Λ4

(

1− cos
2πχ

f

)

, (5.2)

where Λ and f are constants.

Near the hilltop, the axion potential approximately satisfies V (χ) = 2Λ4(1− π2χ2/f2).

This yields a tachyonic mass 2πΛ2/f . Adjusting the φ potential if necessary to ensure that

χ remains light at horizon crossing, the mass induces a large fNL via (4.8).

In Figs. 2 and 3 we show a numerical evolution for two choices of parameters. In Fig. 2 we

take f = MP and Λ4 = 25m2f2/(4π2), which makes the mass of the axion five times greater

than the mass of φ. The initial conditions are φ∗ = 16MP and χ∗ = (f/2− 0.001)MP. As a

consequence of its large mass, the axion rolls off the ridge quite early. Therefore the system

evolves to the limiting trajectory long before the end of inflation. According to §3, departure
from the ridge should produce a large negative spike. Later, convergence into the minimum
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Figure 2. Evolution of fNL for the model of Eq. (5.2) (first set of parameter choices). The solid red

line is a numerical calculation. The blue dashed line is an analytic prediction. The horizontal green

dashed line represents the analytically calculated adiabatic limiting value.

should produce a positive spike, perhaps followed by a plateau. Finally, as the isocurvature

modes are exhausted, the system should evolve to the adiabatic limit (4.8). These features are

clearly visible in Fig. 2. Matching the potential (5.2) to the analysis of §3 and using Eq. (3.9),

we expect the negative peak of fNL to occur at fNL ≈ −0.3MPǫ
1/2
∗ (f/2−χ∗)

−1 ≈ −26. This

gives good agreement with the observed value. By varying the intial conditions we have

verified that scaling with 1/(f/2 − χ∗)−1 is reproduced to a good approximation. In this

case the difference between our slow-roll analysis and the full numerical calculation is at the

level of a few percent, consistent with the accuracy of the slow-roll approximation.

In the second example we take f = MP and Λ4 = m2f2/(4π2), giving both fields the

64 65 66 67
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Figure 3. Evolution of fNL for Eq. (5.2) (second set of parameter choices). The solid red line is

a numerical calculation. The blue dashed line is an analytic prediction. Only the final few e-folds

are shown. The horizontal green dashed line represents the analytically calculated adiabatic limiting

value. The solid vertical line indicates when inflation ends, computed using the exact equations of

motion. As the axion rolls, inflation momentarily restarts and the slow-roll expressions cease to be a

good approximation.
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same mass. In this case the axion starts to evolve only near the end of inflation, where φ is

approaching the minimum. Indeed, much of its evolution takes place while φ is oscillating.

In these circumstances the adiabatic limit cannot be calculated analytically using (4.1).

Nevertheless, the important features can still be understood. While φ is oscillating in the

minimum, its potential energy contributes to the energy density in a way not accounted for by

the slow-roll approximation. If we suppose the φ oscillations do not lead to rapid reheating or

preheating, we may expect ζ to approach a constant as the trajectories settle in the minimim

and Hubble friction drains their energy. The results are given in Fig. 3. In this simple

example, fNL oscillates around an asymptotic value which is lower than would be expected

if the adiabatic limit were reached during inflation. In more sophisticated examples, where

complex dynamical behaviour can occur during the oscillating phase, it would be necessary

to follow their decay in precise detail [85–91].

This example is representative of a class of model where natural focusing occurs—in this

case, caused simply by Hubble damping—but does so only after the slow-roll assumption is

violated. There are other models in this class which lead to a large non-Gaussianity at the

natural adiabatic limit, such as models which possess an inflection point in their potential

with a very slight gradient. We intend to return to these cases in future work [92].

5.1.3 Models with no reconvergence in field space

The third possibility discussed in §1 occurs when the trajectories disperse in field-space but

the potential provides no region which would enable them to refocus. An example is provided

by the model

V = V0φ
2e−λχ2

, (5.3)

which was introduced by Byrnes et al. [65]. The dynamics were followed only until the end

of slow-roll, at which time the non-Gaussianity was indeed large. However, at this point, the

isocurvature modes were not exhausted and the curvature perturbation was still evolving.

To study this model, we make the the same parameter choices as Byrnes et al., setting

λ = 0.05/M2
P, φi = 16MP and χi = 0.001MP [65].

The initial stage is descent from a ridge, and therefore we expect fNL to approach

negative values. This is confirmed in Figs. 4 and 5. As the bundle rolls along the ridge

(defined by χ = 0), we find that Eq. (3.9) gives fNL ≈ −26, in good agreement with the first

negative peak in fNL. We have confirmed that the expected scaling with initial conditions

is approximately respected. With this choice of parameters, a large fNL is still present

as slow-roll breaks down. But because no limiting trajectory is available, fNL continues to

evolve—and subsequently oscillates wildly, as the fields oscillate about the line φ = 0. This

does not represent a stable attractor: φ = 0 is a degenerate vacuum, and the field evolves only

along the χ direction during the oscillations. To reach an adiabatic limit we must apply a

prescription for reheating. Here, we adopt a very simple perturbative model in which energy
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is transferred from the field into a radiation component. The dynamical equations are

φ̈i + 3Hφ̇i = −Γiφ̇i −
∂W

∂φi
(5.4a)

ρ̇ = −4Hρ+
∑

i

Γiφ̇
2
i , (5.4b)

where ρ is energy density of radiation, and the Γi represent the decay rate from species i.

We illustrate the effect of reheating in Fig. 5. The final value of fNL is sensitive to the choice

of Γi, and hence the time-scale of reheating. We take Γi = Γ for all i, making reheating

begin approximately when H = Γ and take place on a uniform density hypersurface. A more

complicated prescription leads to strong secondary effects which radically alter the value or

sign of fNL. After reheating, if the radiation is the only contribution to the energy density,

then the statistics of ζ at this time will be the ones relevant for observation. Fig. 5 indicates

that these will depend on microphysical details of the reheating phase, at least through Γ,

but a systematic understanding is not yet in place.

Our aim has not been to present a realistic model. Rather, we wish to demonstrate

that, if no attractor exists within the inflationary regime, we must follow the dynamics until

all observable quantities stop evolving at the adiabatic limit. We can expect the asymptotic

value of each observable to be sensitive to this evolution, including the time scale and details

of reheating.

5.2 Nf-field models

Similar results naturally apply in models with a larger number of fields. In this section we

study the model of Kim et al. [43] involving many axion fields self-interacting though the

potentials

Vi = Λ4
i

(

1− cos
2πφi

fi

)

. (5.5)
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Figure 4. Evolution of fNL for the model (5.3). The solid red line is a numerical calculation for the

parameter values quoted in the text and Γ = 0.
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Figure 5. Upper panel: numerical evolution of fNL (solid red line) for the parameter values

quoted and Γ = (V0/10)
1/2/MP. The blue dashed line represents the corresponding plot with

Γ = (V0/100)
1/2/MP, and the green dot-dashed line represents the analytical evolution. The an-

alytic evolution terminates when the χ field reaches zero, because the slow-roll expressions can’t

evolve past this point. Lower panel: magnified in the vicinity of the end of inflation. The asymptotic

value of fNL depends on Γ, and therefore on microphysical details of the reheating phase.

Where the parameters Λi and fi take common values Λ and f for each species, and f . MP,

this generates naturally large fNL at the adiabatic limit. Although larger fNL can näıvely

be obtained by decreasing the fi, it is necessary to simultaneously increase the number of

fields in order to obtain sufficient inflation. There is another difficulty. As the fi decrease,

the approach of fNL to its asymptotic limit occurs later in the evolution. In Fig. 6 we show

one realization of this behaviour for Nf = 1800 and fi = MP, with initial conditions for the

fields randomly distributed in the range 0 < φi < πMP. The slow-roll phase ends at latest

when ǫ = 1, marked by the vertical black line. The evolution to the right of this line is not
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trustworthy and should be replaced by a numerical calculation. Unfortunately, owing to the

large number of fields we have not been able to perform a non-slow roll analysis due to the

prohibitive running time of the computation.
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Figure 6. Evolution of fNL for the Nf -axion model, calculated analytically (solid blue line) under

the slow-roll approximation. The horizontal dot-dashed red line is the asymptotic value computed

using the horizon-crossing approximation. (This is unreliable in the present case.) The vertical black

line corresponds to ǫ = 1. Since fNL has not reached the adiabatic limit at this point, this model is

an example in which the adiabatic limit is reached after slow-roll ends. Therefore, numerical analysis

is required to obtain a reliable value for fNL.

There is a specific case where this model can be related exactly to the two-field axion-

plus-quadratic model of the the previous section: when Nf − 1 fields are initially close to

the minimum of the axion potential (φi ≪ f/2 for i = 1, . . . , Nf − 1) with identical initial

conditions, and one field is initially close to its maximum, φNf
≈ f/2. In this case the Nf − 1

fields act like a large number of fields with a quadratic potential. When they all evolve from

an identical initial condition, the dynamics of the many fields is completely identical to the

dynamics of a single field Φ2 =
∑Nf−1

i=1 φ2
i , with a quadratic potential of the same mass as

the individual φi fields. For f = MP, this reduces identically to the second of the two-field

axion-plus-quadratic cases studied in §5.1.2. (See Fig. 3.)

Finally, it is interesting to note that the Nf -field axion model—for which a large fNL

follows from relatively generic initial conditions—is closely related to a two-field model in

which generation of large fNL apparently requires significant fine-tuning. The tuning appears

less dramatic in the original Nf -field model. It is interesting to conjecture that the fine-tuning

of initial conditions required to give large fNL in two-field models may be reduced in models

with many fields.

6 Conclusions

We have studied the evolution of non-Gaussianity in multiple-field models of inflation. Unless

all isocurvature modes become exhausted before the end of inflation, we find that there need
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not be a unique prediction for fNL. Instead, the final value can depend on independent details,

such as the microphysics of a reheating or preheating phase. Where the trajectories naturally

focus—for example, if inflation ends with all fields settling into a minimum of the potential—

numerical calculations are typically required to determine the precise asymptotic value for

fNL. If there is no natural focusing region then numerical calculations and a prescription for

reheating will be required. This confirms the natural expectation that analytic predictions

[38–40, 75] are reliable only if the flow of power from isocurvature to curvature modes is

quenched before the end of the slow-roll phase.

If an adiabatic limit is reached without passage through a natural focusing region,

perhaps by invoking a waterfall transition, then this may occur when the value of fNL is

transiently large. However, we caution that although our numerical calculations indicate

that fNL can sometimes be preserved through a hybrid transition, there does not yet appear

to be a precise characterization of the conditions required for this to occur. Also, whether

the end-point of the waterfall is an adiabatic limit may be model dependent. Temporarily

ignoring these subtleties, we have shown that descent from a ridge or convergence into a

valley can result in a significant, dynamical but transient enhancement of fNL. The two

cases are distinguished by a different sign of the resulting fNL, which is inherited from the

local η parameter.

We have verified that it is possible to construct sum-separable models which exhibit

large fNL even when the adiabatic limit is reached during slow-roll inflation. Therefore there

is no correlation between large fNL at the end of inflation and the presence of an inexhausted

isocurvature perturbation, as has occasionally been suggested. On the other hand, we have

demonstrated that this is impossible for product separable cases, where fNL is always of order

the slow-roll parameters at horizon crossing.

Among the models we have studied is a new two-field model related to the Nf -field axion

model [43]. This exhibits large fNL at the adiabatic limit when this limit is reached before

the breakdown of slow-roll. In addition, inflation can end gracefully rather than through a

sudden transition. As far as we are aware, this is the first example of such behaviour in the

two-field context. This model explicitly illustrates that predictions of the Nf -axion model

may be modified if a full numerical calculation for a sufficiently large number of fields could

be performed.
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A Detailed calculations for separable potentials

A.1 Calculating N,i

Under the assumption of slow-roll and monotonicity (φ̇k < 0), the number of e-folds can be

written with the field φk as a time variable. Taking the functional derivative of this integral

generates three components—two “boundary terms” evaluated on the initial (‘∗’) and final

(‘c’) slices, and a “path term”,

N,iM
2
P =

W

W,k

∣

∣

∣

∣

∗

δik −
W

W,k

∣

∣

∣

∣

c

∂φc
k

∂φ∗

i

−
∫ c

∗

∂

∂φ∗

i

(

W

W,k

)

dφk. (A.1)

The summation convention is not used. Physical quantities are independent of k, which

may be chosen arbitrarily. Employing the notation S =
∑Nf

i=1 Vi and P =
∏Nf

i=1 Vi, where

V1 = V1(φ1) are dimensionless, we restrict attention to potentials of the form W = M4
P F (S)

and W = M4
P G(P ), where F and G are arbitrary functions. We refer to these as sum- and

product-separable potentials respectively.

For the product-separable potential W = M4
P G(P ) we evaluate the path term and the

final boundary term in Eq. (A.1). Using the slow-roll parameters
√
2ǫi = MPG′PV ′

i /GVi

and also defining ui = ǫi/ǫ we find

N,i =
1

M2
P

Vi

V ′

i

∣

∣

∣

∣

∗

(

Gui
G′P

∣

∣

∣

∣

c

−
∫ c

∗

∂

∂φi

(

G

G′P

)

dφi

)

. (A.2)

This applies for arbitrary G. Note that any dependence on k has disappeared. If the ratio

G/G′P depends on P , then the integral requires knowledge of the variation of Vj with φi.

There are at least two cases in which the P -dependence is lost: if the integrand is either zero

or constant. If the integrand is zero then we have G/G′P = A for some constant A. This

gives the general solution G = APB , where the constants A and B can be absorbed into a

redefinition of the potential. This yields

N,i =
1

MP

uci
√

2ǫ∗i
, W = M4

P P. (A.3)

If the integrand is constant this implies G = (B lnP +D)1/A, where A,B,D are constants

of which B and D can be eliminated by a further redefinition. We conclude that a general

potential yielding a P -independent integrand can be expressed as W = M4
P (lnP )1/A and

gives

N,i =
A

M2
P

Vi

V ′

i

∣

∣

∣

∣

∗

(lnV ∗

i − lnV c
i + (lnP )cuci ) , W = M4

P (lnP )1/A. (A.4)

An identical procedure applies to the sum-separable potential, leading to

N,i =
1

MP

uci
√

2ǫ∗i
, W = M4

P eS (A.5)

N,i =
A

M2
P V ′

i
∗ (V

∗

i − V c
i + Scuci ) , W = M4

P S1/A. (A.6)
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A.2 Correspondence between different separable potentials

There is a correspondence between Eqs. (A.5) and (A.3), and between Eqs. (A.6) and (A.4)

which was first pointed out by Wang [61] for two field potentials. Redefining lnVi → Vi turns

a W = M4
P P potential into a W = M4

P eS potential, and redefining eVi → Vi transforms the

potential W = M4
P S1/A into the form W = M4

P (lnP )1/A. Therefore, it is unnecessary to

proceed with all four classes of potential. As an independent pair of potentials, we choose

W = M4
P P and W = M4

P S1/A.

For W = M4
P P :

∂φc
k

∂φ∗

i

=

√

ǫck
ǫ∗i

(δik − uci ) and N,i =
1

MP

uci
√

2ǫ∗i
. (A.7)

For W = M4
P S1/A:

∂φc
k

∂φ∗

i

=
Sc

S∗

√

ǫck
ǫ∗i

(δik − uci ) and N,i =
1

MP S∗
√

2ǫ∗i
(V ∗

i − V c
i + Scuci) . (A.8)

These formulae have previously appeared in Refs. [61, 65, 75].

A.3 N,ij and fNL

To calculate higher-order statistics we require the second derivatives N,ij. It proves conve-

nient to introduce new dimensionless slow-roll parameters

ai = MP
∂

∂φi
ln

(

W

M4
P

)

= MP
W,i

W
=

√
2ǫi (A.9)

bij = M2
P

∂2

∂φi∂φj
ln

(

W

M4
P

)

= M2
P

(

W,ij

W
− W,iW,j

W 2

)

= ηij − 2
√
ǫiǫj . (A.10)

These are elements of a vector a and matrix b respectively. Note that b is diagonal for the

product-separable potential W = M4
P P and so we rewrite N,i = uci/MP a∗i with ui = a2i /|a|2.

A simplification occurs if the limiting trajectory is a straight line in field space, which implies

fNL|straight = −5

6

1

|qc|4
Nf
∑

i=1

(qci )
3 b

∗

ii

a∗i
(A.11)

where the vector qc has elements qci = N,i. If the limiting trajectory lies along the φ axis, then

fNL = −5
6b

∗

φφ. In this case, the sign of fNL is given by the mass of the field at horizon crossing

but the magnitude is slow-roll suppressed. If we do not make the simplifying assumption

that the limiting trajectory is a straight line, then

M2
P N,ij =

qci
a∗i

(2bcii − b∗ii) δij − 2qci q
c
j

(

bii + bjj −
a · b · a

|a|2
)
∣

∣

∣

∣

c

(A.12)

6

5
fNL =

1

|qc|4
Nf
∑

i=1

(

qci
3

a∗i
(2bcii − b∗ii)

)

− 4
q · b · q

|q|2
∣

∣

∣

∣

c

+ 2
a · b · a

|a|2
∣

∣

∣

∣

c

. (A.13)
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For the potential W = M4
P S1/A we have N,i = (V ∗

i − V c
i + Scuci ) /MP a∗iS

∗ . In the

simpler situation where uci is a constant, we find

M2
P N,ij|straight = Aδij − qci

(

Aa∗j +
b∗ij
a∗i

)

−A
S2
c

S2
∗

aci
2

a∗i a
∗

j

(δij − ucj) (A.14)

fNL|straight =
5

6

A

|qc|2 − 5

6

1

|qc|4
Nf
∑

i,j=1

(

qci
2qcj

(

Aa∗i +
b∗ij
a∗i

)

+A
S2
c

S2
∗

aci
2qci q

c
j

a∗i a
∗

j

(δij − ucj)

)

(A.15)

Dropping the assumption that uci is constant leads to additional terms of the form

N,ij = N,ij |straight +
2

M2
P

S2
c

S2
∗

M c
ij

a∗i a
∗

j |ac|2 (A.16)

fNL = fNL|straight +
5

3

S2
c

S2
∗

1

|qc|4|ac|2
Nf
∑

i,j=1

M c
ijq

c
i q

c
j

a∗i a
∗

j

(A.17)

Mij = aibijaj − aiuj(b · a)i − ajui(b · a)j + uiuj(a · b · a). (A.18)
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