17,590 research outputs found
Dynamic confidence during simulated clinical tasks
Objective: Doctors' confidence in their actions is important for clinical performance. While static confidence has been widely studied, no study has examined how confidence changes dynamically during clinical tasks. Method: The confidence of novice (n = 10) and experienced (n = 10) trainee anaesthetists was measured during two simulated anaesthetic crises, bradycardia (easy task) and failure to ventilate (difficult task). Results: As expected, confidence was high in the novice and experienced groups in the easy task. What was surprising, however, was that confidence during the difficult task decreased for both groups, despite appropriate performance. Conclusions: Given that confidence affects performance, it is alarming that doctors who may be acting unsupervised should lose dynamic confidence so quickly. Training is needed to ensure that confidence does not decrease inappropriately during a correctly performed procedure. Whether time on task interacts with incorrect performance to produce further deficits in confidence should now be investigated
Acoustic Supercoupling in a Zero-Compressibility Waveguide
Funneling acoustic waves through largely mismatched channels is of
fundamental importance to tailor and transmit sound for a variety of
applications. In electromagnetics, zero-permittivity metamaterials have been
used to enhance the coupling of energy in and out of ultranarrow channels,
based on a phenomenon known as supercoupling. These metamaterial channels can
support total transmission and complete phase uniformity, independent of the
channel length, despite being geometrically mismatched to their input and
output ports. In the field of acoustics, this phenomenon is challenging to
achieve, since it requires zero-density metamaterials, typically realized with
waveguides periodically loaded with membranes or resonators. Compared to
electromagnetics, the additional challenge is due to the fact that conventional
acoustic waveguides do not support a cut-off for the dominant mode of
propagation, and therefore zero-index can be achieved only based on a
collective resonance of the loading elements. Here we propose and
experimentally realize acoustic supercoupling in a dual regime, using a
compressibility-near-zero acoustic channel. Rather than engineering the channel
with subwavelength inclusions, we operate at the cut-off of a higher-order
acoustic mode, demonstrating the realization and efficient excitation of a
zero-compressibility waveguide with effective soft boundaries. We
experimentally verify strong transmission through a largely mismatched channel
and uniform phase distribution, independent of the channel length. Our results
open interesting pathways towards the realization of extreme acoustic
parameters, and their implementation in relevant applications, such as
ultrasound imaging, sonar technology, and sound transmission
A two-fluid model for tissue growth within\ud a dynamic flow environment
We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study (Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89).\ud
\ud
The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a mechanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct. The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population
Colorectal Cancer Through Simulation and Experiment
Colorectal cancer has continued to generate a huge amount of research interest over several decades, forming a canonical example of tumourigenesis since its use in Fearon and Vogelstein’s linear model of genetic mutation. Over time, the field has witnessed a transition from solely experimental work to the inclusion of mathematical biology and computer-based modelling. The fusion of these disciplines has the potential to provide valuable insights into oncologic processes, but also presents the challenge of uniting many diverse perspectives. Furthermore, the cancer cell phenotype defined by the ‘Hallmarks of Cancer’ has been extended in recent times and provides an excellent basis for future research. We present a timely summary of the literature relating to colorectal cancer, addressing the traditional experimental findings, summarising the key mathematical and computational approaches, and emphasising the role of the Hallmarks in current and future developments. We conclude with a discussion of interdisciplinary work, outlining areas of experimental interest which would benefit from the insight that mathematical and computational modelling can provide
Wound healing angiogenesis the clinical implications of a simple mathematical model
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly-formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds
A note on heat and mass transfer from a sphere in Stokes\ud flow at low Péclet number
We consider the low Péclet number, Pe ≪ 1, asymptotic solution for steady-state heat and mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of van Dyke’s rule up to terms of O(Pe3) shows that the O(Pe3 log Pe) terms in the expression for the average Nusselt/Sherwood number are double those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase significantly the range of validity of the expansion
Mathematical analysis of a model for the growth of the bovine corpus luteum
The corpus luteum (CL) is an ovarian tissue that grows in the wound space created by follicular rupture. It produces the progesterone needed in the uterus to maintain pregnancy. Rapid growth of the CL and progesterone transport to the uterus require angiogenesis, the creation of new blood vessels from pre-existing ones, a process which is regulated by proteins that include fibroblast growth factor 2 (FGF2).\ud
\ud
In this paper we develop a system of time-dependent ordinary differential equations to model CL growth. The dependent variables represent FGF2, endothelial cells (ECs), luteal cells, and stromal cells (like pericytes), by assuming that the CL volume is a continuum of the three cell types. We assume that if the CL volume exceeds that of the ovulated follicle, then growth is inhibited. This threshold volume partitions the system dynamics into two regimes, so that the model may be classified as a Filippov (piecewise smooth) system.\ud
\ud
We show that normal CL growth requires an appropriate balance between the growth rates of luteal and stromal cells. We investigate how angiogenesis influences CL growth by considering how the system dynamics depend on the dimensionless EC proliferation rate, p5. We find that weak (low p5) or strong (high p5) angiogenesis leads to ‘pathological’ CL growth, since the loss of CL constituents compromises progesterone production or delivery. However, for intermediate values of p5, normal CL growth is predicted. The implications of these results for cow fertility are also discussed. For example, inadequate angiogenesis has been linked to infertility in dairy cows
Distribution and reproduction of intertidal species of Aquilonastra and Cryptasterina (Asterinidae) from one tree reef, southern great barrier reef
The Asterinidae in tropical regions includes morphospecies complexes in the genera Aquilonastra and Cryptasterina. Cryptic species in these genera have been discovered based on differences in life histories and by attention to previously poorly investigated habitats. Two species with benthic development occur in the intertidal rubble habitat at One Tree Island, southern Great Barrier Reef Aquilonastra byrneae (O'Loughlin and Rowe, 2006) has oral gonopores and is likely to lay benthic eggs masses. The presence of mature gonads in May and June indicates that egg masses should be present in winter. This species may be a protandric hermaphrodite. Cryptasterina sp. is an intragonadal brooder and may be conspecific with the coastal Cryptasterina hystera Dartnall and Byrne, 2003. This species broods its young to the juvenile stage in spring and summer. The juveniles emerge through aboral gonopores. Cryptasterina sp. is a simultaneous hermaphrodite. Aquilonastra byrneae and Cryptasterina sp. are distributed in the high shore rubble habitat at One Tree Reef in distinct bands at 1.5 m and 1.1 m above Lowest Astronomical Tide, respectively
Object-Oriented Paradigms for Modelling Vascular\ud Tumour Growth: a Case Study
Motivated by a family of related hybrid multiscale models, we have built an object-oriented framework for developing and implementing multiscale models of vascular tumour growth. The models are implemented in our framework as a case study to highlight how object-oriented programming techniques and good object-oriented design may be used effectively to develop hybrid multiscale models of vascular tumour growth. The intention is that this paper will serve as a useful reference for researchers modelling complex biological systems and that these researchers will employ some of the techniques presented herein in their own projects
The interplay between tissue growth and scaffold degradation in engineered tissue constructs
In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation.\ud
\ud
In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (i) differential interactions between cells and the supporting scaffold and their associated ECM, (ii) scaffold degradation, and (iii) mechanotransduction-regulated cell proliferation and ECM deposition.\ud
\ud
Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo
- …