438 research outputs found

    Porcine In Vivo Validation of a Virtual Contrast Model: The Influence of Contrast Agent Properties and Vessel Flow Rates

    Get PDF
    BACKGROUND AND PURPOSE: Accurately and efficiently modeling the transport of angiographic contrast currently offers the best method of verifying computational fluid dynamics simulations and, with it, progress toward the lofty goal of prediction of aneurysm treatment outcome a priori. This study specifically examines the influence of estimated flow rate and contrast properties on such in silico predictions of aneurysm contrast residence and decay. MATERIALS AND METHODS: Four experimental sidewall aneurysms were created in swine, with aneurysm contrast flow patterns and decay rates observed under angiography. A simplified computational fluid dynamics model of the experimental aneurysm was constructed from 3D angiography and contrast residence predicted a priori. The relative influence of a number of estimated model parameters (contrast viscosity, contrast density, and blood flow rate) on contrast residence was then investigated with further simulations. RESULTS: Contrast infiltration and washout pattern were accurately predicted by the a priori computational fluid dynamics model; however, the contrast decay rate was underestimated by ∼25%. This error was attributed to the estimated parent vessel flow rate alone, and the effects of contrast viscosity and density on the decay rate were found to be inconsequential. A linear correlation between the parent vessel flow rate and the corresponding contrast decay rate was observed. CONCLUSIONS: In experimental sidewall aneurysms, contrast fluid properties (viscosity and density) were shown to have a negligible effect on variation in the modeled contrast decay rate. A strong linear correlation was observed between parent vessel flow rate and contrast decay over a physiologically reasonable range of flow rates

    Sperm design and variation in the New World blackbirds (Icteridae)

    Get PDF
    Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed

    Offspring sex ratio and gonadal irradiation in the British Childhood Cancer Survivor Study

    Get PDF
    We investigated offspring sex ratio among 6232 offspring born to 3218 survivors of childhood cancer in relation to therapeutic irradiation, and pooled our data with those from two other large-scale studies giving a total of 9685 offspring. Exposure to high-dose gonadal irradiation was not associated with a significant alteration in offspring sex ratio compared to low doses (men: P=0.58, women: P=0.66). There was also no evidence that the ratio varied with time since cancer diagnosis when comparing survivors treated with radiotherapy vs those without (men: P=0.51; women: P=0.46). This, the largest study to date, finds no evidence that exposure to radiation affects the offspring sex ratio among survivors of childhood cancer

    Metals in Urine and Peripheral Arterial Disease

    Get PDF
    Exposure to metals may promote atherosclerosis. Blood cadmium and lead were associated with peripheral arterial disease (PAD) in the 1999–2000 National Health and Nutrition Examination Survey (NHANES). In the present study we evaluated the association between urinary levels of cadmium, lead, barium, cobalt, cesium, molybdenum, antimony, thallium, and tungsten with PAD in a cross-sectional analysis of 790 participants ≥40 years of age in NHANES 1999–2000. PAD was defined as a blood pressure ankle brachial index < 0.9 in at least one leg. Metals were measured in casual (spot) urine specimens by inductively coupled plasma–mass spectrometry. After multivariable adjustment, subjects with PAD had 36% higher levels of cadmium in urine and 49% higher levels of tungsten compared with noncases. The adjusted odds ratio for PAD comparing the 75th to the 25th percentile of the cadmium distribution was 3.05 [95% confidence interval (CI), 0.97 to 9.58]; that for tungsten was 2.25 (95% CI, 0.97 to 5.24). PAD risk increased sharply at low levels of antimony and remained elevated beyond 0.1 μg/L. PAD was not associated with other metals. In conclusion, urinary cadmium, tungsten, and possibly antimony were associated with PAD in a representative sample of the U.S. population. For cadmium, these results strengthen previous findings using blood cadmium as a biomarker, and they support its role in atherosclerosis. For tungsten and antimony, these results need to be interpreted cautiously in the context of an exploratory analysis but deserve further study. Other metals in urine were not associated with PAD at the levels found in the general population

    Comparison of Devices Used for Stent-Assisted Coiling of Intracranial Aneurysms

    Get PDF
    INTRODUCTION: Two self-expandable stents, the Neuroform and the Enterprise stent, are widely used for stent-assisted coiling (SAC) of complex shaped intracranial aneurysms. However, comparative knowledge about technical feasibility, peri- and post-procedural morbidity and mortality, packing densities as well as follow-up data is limited. MATERIAL AND METHODS: We conducted a retrospective study to investigate differences in aneurysms stented with the Enterprise or Neuroform stents. Angiographic follow-up (mean 19.42 months) was available in 72.6% (61/84) of aneurysms treated with stent-assisted coiling. We further sought to compare stent-assisted coiling to a matched patient population with aneurysms treated by conventional coil embolization. RESULTS: The stenting success rate of the Enterprise was higher compared to the Neuroform stent (46/48 and 42/51, respectively). In 5 of 9 cases in which the Neuroform stent was not navigable to the landing zone, we successfully deployed an Enterprise stent instead. Eventually, 42 aneurysms were coiled after stenting in each group. We observed no significant differences in peri-procedural complication rate, post-procedural hospital stay, packing density, recurrence rate or number of in-stent stenosis. Strikingly, 36.1% of followed aneurysms in the SAC group showed progressive occlusion on angiographic follow-up imaging. The packing density was significantly higher in aneurysms treated by SAC as compared to conventionally coiled aneurysms, while recanalization rate was significantly lower in the SAC group. CONCLUSION: The procedural success rate is higher using the Enterprise, but otherwise both stents exhibited similar characteristics. Lower recurrence frequency and complication rates comparable to conventional coil embolization emphasize the importance of stent-assisted coiling in the treatment of complex aneurysms. Progressive occlusion on angiographic follow-up was a distinct and frequent observation in the SAC group and may in part be due to flow diversion

    Postcopulatory Sexual Selection Is Associated with Reduced Variation in Sperm Morphology

    Get PDF
    The evolutionary role of postcopulatory sexual selection in shaping male reproductive traits, including sperm morphology, is well documented in several taxa. However, previous studies have focused almost exclusively on the influence of sperm competition on variation among species. In this study we tested the hypothesis that intraspecific variation in sperm morphology is driven by the level of postcopulatory sexual selection in passerine birds.Using two proxy measures of sperm competition level, (i) relative testes size and (ii) extrapair paternity level, we found strong evidence that intermale variation in sperm morphology is negatively associated with the degree of postcopulatory sexual selection, independently of phylogeny.Our results show that the role of postcopulatory sexual selection in the evolution of sperm morphology extends to an intraspecific level, reducing the variation towards what might be a species-specific 'optimum' sperm phenotype. This finding suggests that while postcopulatory selection is generally directional (e.g., favouring longer sperm) across avian species, it also acts as a stabilising evolutionary force within species under intense selection, resulting in reduced variation in sperm morphology traits. We discuss some potential evolutionary mechanisms for this pattern

    2D-DIGE as a strategy to identify serum biomarkers in Mexican patients with Type-2 diabetes with different body mass index

    Get PDF
    "Obesity and type 2 diabetes (T2D) are the most prevalent and serious metabolic diseases affecting people worldwide. However racial and ethnic disparities seems to be a risk factor for their development. Mexico has been named as one of the largest populations with the highest prevalence of diabetes and obesity. The aim of this study was to identify novel T2D-associated proteins in Mexican patients. Blood samples were collected from 62 Mexican patients with T2D and they were grouped according to their body mass index (BMI). A panel of 10 diabetes and obesity serum markers was determined using MAGPIX. A comparative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry (LC-MS/MS). We detected 113 spots differentially accumulated, in which 64 unique proteins were identified, proteins that were involved in metabolism pathways, molecular transport, and cellular signalling. Four proteins (14-3-3, ApoH, ZAG, and OTO3) showing diabetes-related variation and also changes in relation to obesity were selected for further validation by western blotting. Our results reveal new diabetes related proteins present in the Mexican population. These could provide additional insight into the understanding of diabetes development in Mexican population and may also be useful candidate biomarkers.

    Genetic architecture of gene expression in ovine skeletal muscle

    Get PDF
    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations
    corecore