2,979 research outputs found

    What Are the Real Procedural Costs of Bariatric Surgery? A Systematic Literature Review of Published Cost Analyses

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordThis review aims to evaluate the current literature on the procedural costs of bariatric surgery for the treatment of severe obesity. Using a published framework for the conduct of micro-costing studies for surgical interventions, existing cost estimates from the literature are assessed for their accuracy, reliability and comprehensiveness based on their consideration of seven ‘important’ cost components. MEDLINE, PubMed, key journals and reference lists of included studies were searched up to January 2017. Eligible studies had to report per-case, total procedural costs for any type of bariatric surgery broken down into two or more individual cost components. A total of 998 citations were screened, of which 13 studies were included for analysis. Included studies were mainly conducted from a US hospital perspective, assessed either gastric bypass or adjustable gastric banding procedures and considered a range of different cost components. The mean total procedural costs for all included studies was US14,389(range,US14,389 (range, US7423 to US$33,541). No study considered all of the recommended ‘important’ cost components and estimation methods were poorly reported. The accuracy, reliability and comprehensiveness of the existing cost estimates are, therefore, questionable. There is a need for a comparative cost analysis of the different approaches to bariatric surgery, with the most appropriate costing approach identified to be micro-costing methods. Such an analysis will not only be useful in estimating the relative cost-effectiveness of different surgeries but will also ensure appropriate reimbursement and budgeting by healthcare payers to ensure barriers to access this effective treatment by severely obese patients are minimised.National Institute for Health Research (NIHR

    The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles.

    Get PDF
    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility

    Controlling the Optical Properties of a Conjugated Co-polymer through Variation of Backbone Isomerism and the Introduction of Carbon Nanotubes

    Get PDF
    The need to control the formation of weakly emitting species in polymers such as aggregates and excimers, which are normally detrimental to device performance, is illustrated for the example of the polymer poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene), using the model compound, 2,5-dioctyloxy-p-distyrylbenzene as a comparison. Two different methods, namely a Homer-Emmons polycondensation in dimethylformamide (DMF) and a Wittig polycondensation in dry toluene, have been used during synthesis resulting in a polymer with a predominantly trans-vinylene backbone and a polymer with a predominantly cis-vinylene backbone, respectively. Photoluminescence and absorption spectroscopy indicate that the polymer forms aggregate species in solution with spectra that are distinctly red-shifted from those associated with the intra-chain exciton. Concentration dependent optical studies were used to probe the evolution of aggregation in solution for both polymers. The results indicate that inter-chain coupling in the predominantly cis-polymer is prominent at lower concentrations than in the case of the trans-counterpart. These results are supported by pico-second pump and probe transient absorption measurements where, in dilute solutions, the polymer in a cis-configuration exhibits highly complex excited state dynamics, whereas the polymer in a trans-configuration behaves similarly to the model compound. It is proposed therefore that the degree of backbone isomerism has a profound impact on the morphology of the polymeric solid and control over it is a route towards optimising the performance of the material in thin film form. Another method to inhibit inter-chain effects using multi walled carbon nanotubes (MWNT) as nano-spacers in the polymer solutions is proposed. By comparison to spectroscopic analysis, aggregation effects are shown to be reduced by the introduction of nanotubes. Electron microscopy and computer simulation suggest a well-defined interaction between the polymer backbone and the lattice of the nanotube

    Comparison of Insertional RNA Editing in Myxomycetes

    Get PDF
    RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Adaptation of the By-Band randomized clinical trial to By-Band-Sleeve to include a new intervention and maintain relevance of the study to practice

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordBACKGROUND: Recruitment into surgical RCTs can be threatened if new interventions available outside the trial compete with those being evaluated. Adapting the trial to include the new intervention may overcome this issue, yet this is not often done in surgery. This paper describes the challenges, rationale and methods for adapting an RCT to include a new intervention. METHODS: The By-Band study was designed in the UK in 2009-2010 to compare the effectiveness of laparoscopic adjustable gastric band and Roux-en-Y gastric bypass for severe obesity. It contained a pilot phase to establish whether recruitment was possible, and the grant proposal specified that an adaptation to include sleeve gastrectomy would be considered if practice changed and recruitment was successful. Information on changing obesity surgery practice, updated evidence and expert opinion about trial design were used to inform the adaptation. RESULTS: The pilot phase recruited over 13 months in 2013-2014 and randomized 80 patients (79 anticipated). During this time, major changes in obesity practice in the UK were observed, with gastric band reducing from 32·6 to 15·8 per cent and sleeve gastrectomy increasing from 9·0 to 28·1 per cent. The evidence base had not changed markedly. The British Obesity and Metabolic Surgery Society and study oversight committees supported an adaptation to include sleeve gastrectomy, and a proposal to do so was approved by the funder. CONCLUSION: Adaptation of a two-group surgical RCT can allow evaluation of a third procedure and maintain relevance of the RCT to practice. It also optimizes the use of existing trial infrastructure to answer an additional important research question. Registration number: ISRCTN00786323 (http://www.isrctn.com/).National Institute of Health Research Health Technology Assessment ProgrammeMedical Research Council (MRC

    The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia

    Get PDF
    © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021Publishe

    Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    Get PDF
    Background: As the oceans simultaneously warm, acidify and increase in P-CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.Methodology/Principal Findings: We examined the interactive effects of near-future ocean warming and increased acidification/P-CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P-CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P-CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P-CO2 treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth.Conclusions and Significance: This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P-CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations
    • …
    corecore