79 research outputs found

    Vibrational Spectroscopy for Pathology from Biochemical Analysis to Diagnostic Tool

    Get PDF
    Cervical cancer is the second most common cancer in women worldwide with 80% of cases arising in the developing world. The mortality associated with cervical cancer can be reduced if this disease is detected at the early stages of development or at the pre-malignant state (cervical intra-epithelial neoplasia, CIN). The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying cervical cancer progression. Raman spectra were acquired from proteins, nucleic acids, lipids and carbohydrates in order to gain an insight into the biochemical composition of cells and tissues. Spectra were also obtained from histological samples of normal, CIN and invasive carcinoma tissue from 40 patients. Multivariate analysis of the spectra was carried out to develop a classification model to discriminate normal from abnormal tissue. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in tissue during disease progression resulting in an exceptional prediction accuracy when discriminating between normal cervical tissue, invasive carcinoma and cervical intra-epithelial neoplasia (CIN). Raman spectroscopy shows enormous clinical potential as a rapid non invasive diagnostic tool for cervical and other cancers

    Multiquasiparticle states in the neutron-rich nucleus 174 Tm

    Get PDF
    Deep inelastic and transfer reactions with an 820-MeV, 136Xe beam and various ytterbium and lutetium targets have been employed to study high-spin structures in the neutron-rich thulium isotopes beyond 171Tm. Results in the doubly odd nucleus, 174Tm, inc

    High-spin structure, K isomers, and state mixing in the neutron-rich isotopes 173 Tm and 175 Tm

    Get PDF
    High-spin states in the odd-proton thulium isotopes 173Tm and 175Tm have been studied using deep-inelastic reactions and γ-ray spectroscopy. In 173Tm, the low-lying structure has been confirmed and numerous new states have been identified, including a t

    Anomalous isomeric decays in 174Lu as a probe of K-mixing and interactions in deformed nuclei

    No full text
    A KÏ€=13+, 280 ns four-quasiparticle isomer in the odd-odd nucleus 174Lu has been identified and characterized. The isomer decays to both KÏ€=7+ and KÏ€=0+ rotational bands obtained from the parallel and antiparallel coupling of the proton 7/2+[404] and neutron 7/2+[633] orbitals. K mixing caused by particle-rotation coupling explains the anomalously fast transition rates to the 7+ band but those to the 0+ band are caused by a chance degeneracy between the isomer and a collective state, allowing the mixing matrix element for a large K difference to be deduced

    Isomers and excitation modes in the gamma-soft nucleus 192 Os

    Get PDF
    New spectroscopic results for high-spin states in 192Os populated in deep-inelastic reactions include the identification of a 2-ns, 12+ isomeric state at 2865 keV and a 295-ns, 20+ state at 4580 keV and their associated δJ=2 sequences. The structures ar

    Long-lived three-quasiparticle isomers in 191Ir and 193Ir with triaxial deformation

    Get PDF
    Deep-inelastic reactions have been used to populate high-spin states in the iridium isotopes. New results include the identification of particularly long-lived three-quasiparticle isomers in 191Ir and 193Ir, with mean-lives of 8.2(7) s and 180(3) μs res

    Isomers and alignments in 191Ir and 192Os

    Get PDF
    Deep-Inelastic reactions have been used to populate high-spin states in the even-even osmium isotopes and in the iridium neighbors. New isomers have been identified in 190Os, 192Os, 194Os, 191Ir and 193Ir. These include a 2 ns 12 + state at 2865 keV and a 295 ns, 20 + state at 4580 keV in 192Os. Although a number of multi-quasiparticle states arising from prolate and triaxial deformations are expected in these nuclei, the main structures in 192Os can be interpreted as a two-stage alignment of i 13/2 neutrons at oblate deformation, in close analogy with similar structures in the isotones 194Pt and 196Hg. The isomers are attributed to low-energy E2 transitions at the point of the alignment gains. The isomer observed in 191Ir is long-lived (τ m ∼8s) and probably arises from coupling of the h 11/2 proton to the 10 -ν/9/2 - [505]11/2 + [615] prolate configuration that gives rise to long-lived isomers in 190Os and 192Os, although potential-energy-surface calculations indicate that the resultant three-quasiparticle state will be triaxial

    Decay of a three-quasiparticle isomer in the neutron-rich nucleus 183Ta

    Get PDF
    Excited states in neutron-rich tantalum isotopes have been studied with deep-inelastic reactions using 136Xe ions incident on a 186W target. New transitions observed below the τ=1.3 μs isomer in 183Ta have enabled the establishment of its energy and pu

    Effective charge of the [pi]h11/2 orbital and the electric field gradient of Hg from the yrast structure of 206Hg

    No full text
    The γ-ray decay of excited states of the two-proton hole nucleus, 206Hg, has been identified using Gammasphere and 208Pb+238U collisions. The yrast states found include a T1/2 = 92(8)ns 10+ isomer located above the known 5- isomer. The B(E2;10+→8+) strength is used to derive the quadrupole polarization charge induced by the h11/2 proton hole. Also, the implied quadrupole moment has been used to provide an absolute scale for the electric field gradient of Hg in Hg metal
    • …
    corecore