PHYSICAL REVIEW C 86, 054314 (2012)

High-spin structure, *K* isomers, and state mixing in the neutron-rich isotopes ¹⁷³Tm and ¹⁷⁵Tm

R. O. Hughes,^{1,*} G. J. Lane,¹ G. D. Dracoulis,¹ A. P. Byrne,¹ P. H. Nieminen,^{1,†} H. Watanabe,^{1,†} M. P. Carpenter,²

P. Chowdhury,³ R. V. F. Janssens,² F. G. Kondev,⁴ T. Lauritsen,² D. Seweryniak,² and S. Zhu²

¹Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University,

Canberra, ACT 0200, Australia

²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

³Department of Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA

⁴Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 24 January 2012; revised manuscript received 9 October 2012; published 26 November 2012)

High-spin states in the odd-proton thulium isotopes ¹⁷³Tm and ¹⁷⁵Tm have been studied using deep-inelastic reactions and γ -ray spectroscopy. In ¹⁷³Tm, the low-lying structure has been confirmed and numerous new states have been identified, including a three-quasiparticle $K^{\pi} = 19/2^{-}$ isomer with a lifetime of $\tau = 360(100)$ ns at 1906 keV and a five-quasiparticle $K^{\pi} = 35/2^{-}$ isomer with a lifetime of $\tau = 175(40)$ ns at 4048 keV. The $K^{\pi} = 35/2^{-}$ state is interpreted as a *t*-band configuration that shows anomalously fast decays. In ¹⁷⁵Tm, the low-lying structure has been reevaluated, a candidate state for the $9/2^{-}[514]$ orbital has been identified at 1175 keV, and the $7/2^{-}[523]$ bandhead has been measured to have a lifetime of $\tau = 460(50)$ ns. Newly identified high-*K* structures in ¹⁷⁵Tm include a $K^{\pi} = 15/2^{-}$ isomer with a lifetime of $\tau = 64(3)$ ns at 947 keV and a $K^{\pi} = 23/2^{+}$ isomer with a lifetime of $\tau = 30(20) \ \mu$ s at 1518 keV. The $K^{\pi} = 15/2^{-}$ isomer shows relatively enhanced decays to the $7/2^{-}[523]$ band that can be explained by chance mixing with the 15/2⁻ member of the $7/2^{-}$ band. Multiquasiparticle calculations have been performed for ¹⁷³Tm and ¹⁷⁵Tm, the results of which compare well with the experimentally observed high-spin states.

DOI: 10.1103/PhysRevC.86.054314

PACS number(s): 21.10.Re, 21.10.Tg, 23.20.Lv, 27.70.+q

I. INTRODUCTION

The rare-earth nuclei around mass ~180 are quadrupole deformed and typically have orbitals with large spin projection on the symmetry axis, Ω , near both the proton and neutron Fermi surfaces. This leads to the prospect of multiquasiparticle states with high *K* (where $K = \sum \Omega_i$) occurring near the yrast line. *K* isomers are consequently expected in this region. These arise when a state can only decay via transitions of multipolarity, *L*, that violate the *K* selection rule by an order of forbiddenness, $\nu = \Delta K - L$.

The present work is part of an ongoing effort to map isomerism in the neutron-rich, deformed nuclei using deepinelastic reactions. This has so far encompassed studies of various isotopes of tungsten, tantalum, hafnium, lutetium, ytterbium, and erbium (see, e.g., [1–7] and references therein). Deep-inelastic reactions have become a key tool in studying neutron-rich rare-earth nuclei, since they cannot be populated by more conventional reactions.

While a substantial number of the nuclei in the mass-180 region have been studied, there are still gaps in the experimental

data available, particularly when moving away from stability to very neutron rich isotopes. For the thulium isotopes (Z = 69), beyond the stable isotope ¹⁶⁹Tm, recent work in ¹⁷¹Tm revealed the structure of a three-quasiparticle, $19/2^+$ isomer [8,9], while in ¹⁷²Tm a low-lying, two-quasiparticle, $K^{\pi} = 6^+$ isomer was found in incomplete fusion studies [10]. Nevertheless, the nuclear structure information for isotopes beyond ¹⁷¹Tm is limited to relatively low spins and to one- or two-quasiparticle states for odd-even and odd-odd isotopes, respectively. The odd-A isotopes ¹⁷³Tm and ¹⁷⁵Tm are the focus of the present work. The proton Fermi surface lies closest to the $1/2^+$ [411] Nilsson orbital, with nearby $7/2^{-}[523]$ and $7/2^{+}[404]$ states. The neutron Fermi surface is near the $5/2^{-1}[512]$, $7/2^{-1}[514]$, $7/2^{+}[633]$, and $9/2^{+}[624]$ orbitals. Combinations of these orbitals should lead to low-lying, high-K, multiquasiparticle states.

II. EXPERIMENTAL PROCEDURES

The experiments were performed at Argonne National Laboratory using ¹⁷⁶Yb (97% enriched), ¹⁷⁶Lu (47% enriched), ¹⁷⁴Yb (95% enriched), and ¹⁷⁵Lu (natural 97% ¹⁷⁵Lu, 3% ¹⁷⁶Lu) targets and an 820-MeV ¹³⁶Xe beam. The beam energy and target thicknesses of about 6 mg/cm² were chosen to maximize the yields of deep inelastic and transfer reactions, by integrating energies from ~24% above the Coulomb barrier down to the barrier, due to the energy loss in the target. The reaction products were stopped in gold backings. The comparatively light beam (in comparison with other studies using a ²³⁸U beam [11]) was chosen to reduce the background from strong Coulomb excitation while still producing

^{*}rhughes2@richmond.edu; present address: Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.

[†]Present address: Deparment of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.

[‡]Present address: Nuclear Physics Research Division, RIKEN Nishina Center for Accelerator-based Science, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan.

large spin and mass transfer. Gammasphere consisted of 101 Compton-suppressed germanium detectors in the various experiments.

The majority of data collection was performed with a pulsed beam, using nanosecond pulses and 825-ns intervals. The coincidence events were collected with a coincidence overlap of approximately ± 800 ns. About 3×10^9 , 2×10^9 , 2×10^8 , and 2×10^8 coincidence events of three- or higher fold were collected for the ¹⁷⁶Yb, ¹⁷⁶Lu, ¹⁷⁴Yb, and ¹⁷⁵Lu targets, respectively. Data were also collected with a dual-coincidence requirement and chopping conditions designed to measure long isomer lifetimes. For the ¹⁷⁶Lu target, on/off chopping regimes of 10/40 μ s, 20/60 μ s, 100/300 μ s, and 1/3 ms were used, while for the ¹⁷⁶Yb target, only one chopping regime with 1/3 ms was used.

III. ANALYSIS TECHNIQUES

The γ -ray data were initially presorted into the Blue database [12], including gain corrections, time corrections, and the removal of detectors with poor timing or energy resolution. The data were subsequently sorted into in-beam (-30 to +100 ns) and out-of-beam (+100 to +750 ns) γ - γ - γ coincidence cubes for analysis with the RADWARE [13] software package. Asymmetric histograms, such as γ - γ -time-difference and γ - γ -clock cubes utilized for measuring lifetimes were analyzed using software built on the core program ROOT [14]. The thulium isotopes were most strongly observed with the ¹⁷⁶Yb target, and the majority of coincidence analyses were conducted using these data sets.

A. Gammasphere efficiency

The initial relative efficiency measurement for the present study used ¹⁵²Eu, ¹⁸²Ta, and ²⁴¹Am source data collected in singles mode. However, it was observed that the relative efficiency of low-energy γ rays gave measured intensities in the γ - γ - γ cube which were lower than expected, possibly due partially to the lower fold of cascades measured from the sources compared to in-beam data. In addition, the time constraints placed on the coincidence cube can suppress low-energy transitions due to time walk. Additional internal calibrations were performed to evaluate the efficiency for low-energy lines using various delayed cascades measured below known isomers in the γ - γ - γ coincidence cubes. However, the limited number of available points results in a large uncertainty at low energies (~30% below 60 keV).

B. Internal conversion and transition multipolarities

Total conversion coefficients were extracted (by using appropriate gating conditions in $\gamma - \gamma - \gamma$ cubes) by balancing the intensities of transitions in decay paths where at least one γ ray has a known multipolarity. In a number of cases, comparison of these with theoretical predictions [15] allowed transition multipolarities to be either deduced or constrained.

C. Isotopic assignments

In deep-inelastic and binary or few-nucleon transfer reactions, the beamlike and targetlike products are mass correlated, since the total mass of the beam and target must equal the sum over the reaction products. As an example, for the ¹³⁶Xe beam on a ¹⁷⁶Yb target, a targetlike fragment of ¹⁷⁵Tm will be correlated with a beamlike fragment of ¹³⁷Cs. As a result, prompt γ rays from ¹³⁷Cs and ¹⁷⁵Tm should be in coincidence with each other, following a proton-transfer reaction. However, it is also common for particle evaporation from the beamlike and targetlike reaction products to follow the primary reaction. Broda and co-workers [16,17] found that, typically, a few nucleons are lost, generally neutrons, so that the coincident beamlike and targetlike reaction products are not necessarily specified uniquely. The production of thulium isotopes lighter than ¹⁷⁵Tm (in the ¹⁷⁶Yb target dataset, used for the majority of analysis) seemed to proceed predominantly via the initial production of ¹³⁷Cs and ¹⁷⁵Tm, followed by the evaporation of neutrons from ¹⁷⁵Tm. This was evident from the fact that γ rays associated with ¹³⁷Cs were observed in coincidence with all of the thulium structures identified in the prompt data.

The systematic nature of the present series of experiments (the use of different targets with the same experimental conditions) has made it possible to observe the population cross sections of various nuclei depending on their proximity to the target isotope. The relative yields from different targets can, in some cases, be used to guide isotopic assignments. Structures associated with ¹⁷⁵Tm, for example, were very weakly observed with targets other than ¹⁷⁶Yb. This is expected since ¹⁷⁵Tm is only one proton removed from ¹⁷⁶Yb, whereas more complex proton and neutron transfers are required to produce ¹⁷⁵Tm from ¹⁷⁴Yb, ¹⁷⁵Lu, and ¹⁷⁶Lu.

The relative population intensities of different structures assigned to thulium were obtained by measuring the γ -ray intensities of transitions associated with each structure using double-gated coincidence spectra from the triples data of all four target datasets. Table I presents these relative population intensities labeled in each case with the gating transitions.

TABLE I. Relative population intensities of thulium structures in the ¹⁷⁶Yb, ¹⁷⁴Yb, ¹⁷⁶Lu, and ¹⁷⁵Lu data sets normalized to the ¹⁷⁶Yb data point.

Isotopic	Signature		Ta	rget	
assignment	γ rays (keV)	$^{176}_{70} Yb_{106}$	$^{174}_{70}Yb_{104}$	${}^{176}_{71}Lu_{105}{}^{a}$	$^{175}_{71}Lu_{104}$
$^{171}_{69}$ Tm ₁₀₂	352/428	1.0(1)	1.5(3)	0.7(1)	3.5(3)
$^{172}_{69}\text{Tm}_{103}$	224/846	1.0(1)	1.3(3)	0.5(1)	0.9(2)
0,	102/228	1.0(1)	0.9(2)	0.4(2)	0.6(3)
$^{173}_{69}\text{Tm}_{104}$	152/171	1.0(1)	1.1(2)	0.4(1)	0.5(1)
	154/166	1.0(1)	1.0(2)	0.4(1)	0.4(1)
	548/704	1.0(1)	0.7(2)	0.3(1)	0.3(2)
$^{174}_{69}\text{Tm}_{105}$	359/438	1.0(1)	0.5(3)	0.1(1)	0.1(1)
07	200/489	1.0(1)	0.3(1)	0.1(1)	0.1(1)
$^{175}_{69} Tm_{106}$	108/213	1.0(1)	0.1(1)	< 0.1	< 0.1

^aThe yields deduced for ¹⁷⁶Lu may be unreliable due to high ¹⁷⁵Lu content (\sim 53%) and thorium contamination in the target.

The yields were normalized to take into account the different integrated beam in each case. The various structures are grouped by the thulium isotope to which they are assigned (structures associated with ¹⁷¹Tm, ¹⁷²Tm, and ¹⁷⁴Tm will not be discussed in the present work). The population intensities of structures belonging to ¹⁷⁴Tm and ¹⁷⁵Tm rapidly fall off for the ¹⁷⁴Yb, ¹⁷⁵Lu, and ¹⁷⁶Lu target data relative to the ¹⁷⁶Yb target dataset. Note also the high population intensity for ¹⁷¹Tm with the ¹⁷⁵Lu target (the α -transfer channel). In the case of the ¹⁷⁶Lu target, the large ¹⁷⁵Lu component as well as significant thorium contamination may make the ratios unreliable. (The latter contamination is linked to the use of thorium in the reduction process involved in target production.) The relative population intensity information was important for isotopic assignments in the present study, since little previous spectroscopic information was available.

IV. RESULTS

A. ¹⁷⁵Tm

Figure 1 presents out-of-beam γ -ray spectra associated with ¹⁷⁵Tm. The present level scheme (Fig. 2) is consistent with the previous assignments of Løvhøiden *et al.* [18] for the low-lying members of the $1/2^+$ [411] and $7/2^-$ [523] bands. (Note that Ref. [18] used charged-particle studies resulting in 2- to 4-keV uncertainties in level energies.)

1. $1/2^+$ [411] ground-state band

The ground-state rotational band was previously assigned up to the $9/2^+$ member by Løvhøiden *et al.* [18], albeit with large uncertainties in the level energies, which prevented differentiation between the $7/2^+$ and $5/2^+$ levels, for example. In the present work, the band has been extended to the $23/2^+$ member by utilizing the in-beam gated $\gamma - \gamma - \gamma$ coincidence cube from the ¹⁷⁶Yb target data. It should be noted that the Doppler broadening, evident, for example, in the spectra of Fig. 3, limits the observation of higher spin rotational states that are not fed by isomers.

Figure 3(a) displays the E2 crossover transitions in the $3/2^+$, $7/2^+$, $11/2^+$, ... sequence (signature, $\alpha = -1/2$). The low-lying members of the weaker $1/2^+$, $5/2^+$, $9/2^+$, ... sequence (signature, $\alpha = +1/2$) are observed in the out-of-beam data since the $9/2^+$ state is populated by an 87-keV branch from the $7/2^-$ isomer. Higher lying transitions associated with the $\alpha = +1/2$ signature band are seen weakly in the in-beam spectra of Figs. 3(a)-3(c).

Figure 4 plots the rotational energy constant for the two signature sequences of the $1/2^+[411]$ bands of ¹⁷¹Tm [19], ¹⁷³Tm, and ¹⁷⁵Tm. The plots for ¹⁷¹Tm and ¹⁷⁵Tm are very similar, supporting the present assignments. (The ¹⁷³Tm results are limited to low spin.) The energy for the $J^{\pi} = 3/2^+$ level in ¹⁷⁵Tm is estimated at $E_x = 0.5(4)$ keV by the extrapolation shown in the figure. The inferred 127(1)-keV $5/2^+ \rightarrow 1/2^+$ transition would, therefore, be unresolved from the stronger 126.9(3)-keV $5/2^+ \rightarrow 3/2^+$ transition in Fig. 1(c), for example. The results for the $1/2^+[411]$ band in

FIG. 1. Gamma-ray spectra for ¹⁷⁵Tm. (a) Spectrum obtained with a double gate on the 108/213-keV γ rays. (b) Spectrum produced in a sum of 127/313- and 129/311-keV double gates projecting 80–800 ns early in time. The inset provides an expanded view of the higher energy region. (c) Spectrum resulting from a sum of 164/(108,114,137,191,213)-keV and 301/(108,114,191,213)-keV double gates, projecting 80–800 ns early in time with respect to the gating transitions. Low-energy time walk means that the 92-, 108-, and 114-keV transitions from above the isomer are seen weakly in the spectrum. The inset shows an expanded view around the (weak) 440-keV transition. Contaminants are labeled with filled circles.

 175 Tm disagree with those of Zhang *et al.* [20]. However, the present, more comprehensive results are internally consistent, in agreement with systematics and also with the results of Løvhøiden *et al.* [18].

2. 7/2⁻[523] isomer at 440 keV

A 7/2⁻[523] configuration assignment was proposed for this state by Løvhøiden *et al.* [18], but no lifetime was reported. A time-difference spectrum produced from a sum of double coincidence gates placed below and above the isomer from which a lifetime of $\tau = 460(50)$ ns was deduced is presented in Fig. 5.

Extensions of the $7/2^{-}$ [523] rotational band up to its $19/2^{-}$ member were obtained by analyzing a matrix produced with

FIG. 2. Proposed level scheme for ¹⁷⁵Tm. Arrow widths are proportional to the relative γ -ray intensities. The state at 2124 keV is proposed to be populated via β decay from the (9/2⁺) ground state of ¹⁷⁵Er.

a requirement that coincidence events occurred both in-beam and also 30–800 ns earlier than the 311- or 313-keV transitions.

et al. [20] to be populated in the β decay of ¹⁷⁵Er were not observed in the present work.

3. Levels at 1175, 1434, and 2124 keV

The 691- and 993-keV γ rays that are observed above the $7/2^{-}$ isomer in Fig. 1(b) display a constant intensity over the full out-of-beam time range of the 1 ms/3 ms chopped data, implying a feeding lifetime of the order of several milliseconds or longer. The associated states also feed into a K = 7/2level with no other obvious decay branches, suggesting low-Kassignments for the 1434- and 2124-keV levels. These states are presumed therefore to be populated by feeding from the β decay of the $(9/2^+)$ ground state of ¹⁷⁵Er [21]. A third level was also identified at 1175 keV, exhibiting weak 643- and 735-keV decay branches to the $7/2^-$ and $9/2^-$ members of the 7/2⁻[523] band. Comparison with the 1213-keV 9/2⁻[514] state in 173 Tm (which also exhibits decays to the $7/2^{-}$ and $9/2^{-}$ members of the $7/2^{-}$ [523] band) suggests that the 1175-keV state is a good candidate for the expected $9/2^{-}[514]$ intrinsic state. It should be noted that the levels proposed by Zhang

4. 15/2⁻ isomer at 947 keV

A lifetime of $\tau = 64(3)$ ns was deduced for the 947-keV state from the time-difference spectrum presented in Fig. 6. Gamma-ray branches of 301 keV to the $11/2^-$ member and 164 keV to the $13/2^-$ member of the $7/2^-$ [523] band are observed, and the presence of a 5.2(2)-keV transition to the $15/2^-$ member is inferred from the observation of weak 159-and 295-keV γ rays in delayed coincidence with transitions above the $15/2^-$ isomer [see Fig. 1(a)]. These branches limit the spin and parity to $K^{\pi} = 13/2^{\pm}$ or $15/2^{\pm}$.

The total conversion coefficient for the 164-keV branch was deduced from an intensity balance at the 783-keV level, by using the intensities from the spectrum of Fig. 1(a). (Mixing ratios for the E2/M1 137- and 159-keV γ rays are given in Table V.) The derived internal conversion coefficient of $\alpha_T(164) = 0.70(8)$ can be compared to predictions [15] of 0.09 for E1, 0.76 for M1, 0.51 for E2, and 4.76 for M2. The E1 and M2 possibilities are excluded, while an E2 assignment

5000

4000

(a) sum of double-gates

327

FIG. 3. In-beam γ -ray spectra associated with the ground-state band in ¹⁷⁵Tm. Identified contaminants are labeled with filled circles. Higher energy transitions display significant Doppler broadening. (a) Spectrum produced with a sum of in-beam 129/230-, 129/327-, 129/418-, 230/327-, 230/418-, and 327/418-keV double coincidence gates. Cross-coincidences with ¹³⁷Cs imply a thulium isotope with mass 171 $\leq A \leq$ 175. (b) Spectrum obtained with a 129/230keV double gate. The 105/402-keV double gate has been subtracted to eliminate some contaminant lines. (c) Spectrum resulting from a 224/409-keV double gate, showing the 322-keV line.

would require the 301-keV branch to be a very enhanced *M*3, which can be eliminated. This limits the 164-keV transition to be of *M*1 multipolarity while the 301-keV γ ray is most likely an *E*2 transition, resulting in a $K^{\pi} = 15/2^{-}$ assignment for the 947-keV isomer.

5. 17/2⁻ state at 1005.0 keV

A rotational band positioned above the 947-keV $15/2^{-1}$ isomer was identified by a strong 191- and 213-keV cascade and a weaker, 405-keV crossover transition, low in the band [Fig. 1(b)] that are fed by a higher lying isomer. The band is likely to have $K^{\pi} = 17/2^{-1}$, based on the $|g_K - g_R|$ value discussed below. The 58-keV transition placed as a decay from the $17/2^{-1}$ bandhead at 1005-keV to the 947-keV state can be seen in the spectrum of Fig. 7(c), obtained from a 108/213-keV coincidence gate [Fig. 7(a)], but with the ¹⁷⁴Tm coincidence spectrum in Fig. 7(b) having been subtracted to remove

FIG. 4. Plots of the rotational energy constant for the two signature sequences in the $1/2^+[411]$ bands of 171 Tm [19], 173 Tm, and 175 Tm. The open circle in the 175 Tm plot is an extrapolation used to extract the $3/2^+$ level energy.

the characteristic Tm x rays and, thus, isolate the 58-keV transition. By assuming that the E2/M1 mixing ratio for the 191-keV transition is the same as for the 213-keV transition in the same rotational band [$\delta(213 \text{ keV}) = 0.31(4)$ in Table V], an intensity balance for the 58- and 191-keV transitions leads to a conversion coefficient of $\alpha_T(58) = 5.3(23)$. This can be compared with predictions [15] of 0.26 for E1, 2.4 for M1, and much larger values of 26.3 for E2 and 80.6 for M2

FIG. 5. Time-difference spectrum produced from transitions above and below the $7/2^{-}$ [523] isomer at 440 keV.

FIG. 6. Time-difference spectrum measured between pairwise combinations of transitions above and below the $15/2^-$ 947-keV isomer in ¹⁷⁵Tm. A lifetime of $\tau = 64(3)$ ns is deduced from a fit which includes the intrinsic time resolution.

multipolarities, respectively. All multipolarities except M1 can, therefore, be ruled out. Note that a small E2/M1 mixing ratio for the 58-keV transition would give a larger predicted conversion coefficient, closer to the experimental value. A 249-keV transition is observed in parallel with the 191- and 58-keV transitions, supporting the present placements.

The rotational band built upon the $17/2^{-}$ level was extended up to the $27/2^{-}$ member using a matrix produced with a requirement that coincidence events occurred in-beam and also preceded 311- or 313-keV transitions by 30–800 ns.

6. 23/2⁺ isomer at 1518 keV

A lifetime of $\tau = 30(20) \ \mu s$ was measured from the spectrum of Fig. 8. The large error is a result of low statistics,

FIG. 7. Comparison of low-energy transitions in double-gated γ -ray spectra for (a) ¹⁷⁵Tm and (b) ¹⁷⁴Tm. The spectra were chosen for the best possible x-ray peaks in each case. Spectrum (c) is obtained from spectrum (b) normalized and subtracted from spectrum (a), demonstrating the presence of the 58-keV transition in ¹⁷⁵Tm.

FIG. 8. Time spectrum for the sum of 108/164-keV, 108/191-keV, 108/213-keV, and 108/301-keV coincidence events from the 1 ms/3 ms chopped, γ - γ -clock data with the ¹⁷⁶Yb target. Due to the very low statistics, the spectrum is compressed to ~8 μ s/channel.

due to the mismatch between the experimental chopping conditions (1 ms/3 ms) and the actual lifetime. (Note that the fit of Fig. 8 is performed beyond the distortion at the start of the spectrum.)

An intensity balance for the 108-, 213-, and 405-keV transitions under the assumption that $\delta(213 \text{ keV}) = 0.31(4)$, gives $\alpha_T(108) = 0.26(4)$, to be compared with predicted values of 0.27 for *E*1, 2.47 for *M*1, 2.27 for *E*2, and 21.6 for *M*2 multipolarities, respectively. The 108-keV transition must, therefore, be of *E*1 multipolarity. The likely *M*2 assignment for the 322-keV branch results in a $K^{\pi} = 23/2^+$ assignment for the isomer, consistent with the reduced hindrances of the decays, as shown later in Table VII.

Due to the long lifetime, it was not possible to correlate coincidences across this isomer. Higher lying structures in ¹⁷⁵Tm, including the expected rotational band, therefore remain unidentified, although the states above this (yrast) isomer should be populated with reasonably high yield.

7. Summary of energy levels and γ rays associated with ¹⁷⁵Tm

Properties of γ -ray transitions assigned to ¹⁷⁵Tm, including the energies and intensities, the initial and final level energies, and spin-parity assignments (where applicable), are listed in Table II. Gamma-ray intensities are normalized to the prominent 108-keV line. Since there was no single spectrum in which all out-of-beam intensities could be measured, the intensities of γ rays from each level were deduced from the measured branching ratios, by taking into account the total intensity feeding into that state and γ -ray conversion coefficients from Ref. [15]. The intensity errors account for the uncertainties in branching ratios feeding intensities and conversion coefficients.

B. ¹⁷³Tm

Figure 9 presents γ -ray spectra associated with ¹⁷³Tm that are observed out of beam with the ¹⁷⁶Yb target. The proposed ¹⁷³Tm level scheme is shown in Fig. 10.

TABLE II. Transitions assigned to ¹⁷⁵Tm.

E_{γ} (keV)	I_{γ}	E_i (keV)	E_f (keV)	$K_i^{\pi} J_i^{\pi}$	$K^{\pi}_f \; J^{\pi}_f$
5.2(2) ^a	<0.13 ^b	946.8	941.6	$\frac{15}{2} - \frac{15}{2} -$	$\frac{7}{2} - \frac{15}{2} -$
58.2(6)	216(81)	1005.0	946.8	$\frac{17}{2} - \frac{17}{17} -$	$\frac{15}{2} - \frac{15}{2} - \frac{15}{2}$
87.4(4)	13(9)	440.3	353	$\frac{2}{7} - \frac{2}{7} - \frac{2}{7}$	$\frac{1}{2} + \frac{2}{9} +$
91.9(2)	262(35)	532.2	440.3	$\frac{2}{7} - \frac{2}{9} -$	$\frac{2}{7} - \frac{2}{7} - \frac{2}{7}$
108.3(1)	1000(56)	1517.9	1409.6	$\frac{2}{23} + \frac{2}{23} +$	$\frac{17}{17} - \frac{2}{21} - \frac{1}{21}$
114.1(1)	379(51)	646.3	532.2	$\frac{2}{7} - \frac{2}{11} - \frac{11}{2}$	$\frac{2}{7} - \frac{2}{9} -$
126.9(3)	221(24) ^c	127.4	0.5	$\frac{2}{1} + \frac{2}{5} +$	$\frac{2}{1} + \frac{2}{3} +$
127(1)	c	127.4	0	$\frac{2}{1} + \frac{2}{5} +$	$\frac{2}{1} + \frac{2}{1} +$
128.8(2)	302(33)	129.3	0.5	$\frac{2}{1} + \frac{2}{7} +$	$\frac{2}{1} + \frac{2}{3} +$
136.8(1)	419(48)	783.0	646.3	$\frac{2}{7} - \frac{2}{13} - \frac{13}{13}$	$\frac{2}{7} - \frac{2}{11} - \frac{2}{11}$
158.6(2)	38(6)	941.6	783.0	$\frac{2}{7} - \frac{2}{15} -$	$\frac{2}{7} - \frac{2}{13} - \frac{13}{13}$
163.8(1)	566(35)	946.8	783.0	$\frac{2}{15} - \frac{2}{15} - \frac{2}{15} - \frac{2}{15}$	$\frac{2}{7} - \frac{2}{13} -$
181.6(3)	000(00)	1123.3	941.6	$\frac{2}{7} - \frac{2}{17} -$	$\frac{2}{7} - \frac{2}{15} -$
191.2(1)	822(71)	1196.2	1005.0	$\frac{2}{17} - \frac{2}{19} -$	$\frac{2}{17} - \frac{2}{17} - $
200 5(5)	022((1))	1324.1	1123.3	$\frac{2}{7} - \frac{2}{19} -$	$\frac{2}{7} - \frac{2}{17} -$
206.3(3)	42(8)	646 3	440.3	$\frac{2}{7} - \frac{2}{11} -$	$\frac{2}{7} - \frac{2}{7} -$
200.2(2) 213 4(1)	843(71)	1409.6	1196.2	$\frac{2}{17} - \frac{2}{21} - $	$\frac{2}{17} - \frac{2}{19} -$
273.1(1)	7(5)	353	129.3	$\frac{2}{1} + \frac{2}{9} +$	$\frac{2}{1} + \frac{2}{7} +$
226(1)	7(5)	353	127.5	$\frac{2}{1} + \frac{2}{9} +$	$\frac{2}{1} + \frac{2}{5} +$
220(1) 229 5(2)	7(5)	358.8	127.1	$\frac{2}{1} + \frac{2}{11} +$	$\frac{2}{1} + \frac{2}{7} +$
225.5(2) 235.1(3)		1644 7	1409.6	$\frac{2}{17} - \frac{2}{23} - $	$\frac{2}{17} - \frac{2}{21} - $
233.1(3) 249(1)	9(5)	1196.2	946.8	$\frac{2}{17} - \frac{2}{19} -$	$\frac{2}{15} - \frac{2}{15} - $
219(1) 2509(2)	105(15)	783.0	532.2	$\frac{2}{7} - \frac{2}{13} -$	$\frac{2}{7} - \frac{2}{9} -$
255.5(2)	105(15)	1900.2	1644 7	$\frac{2}{17} - \frac{2}{25} -$	$\frac{2}{17} - \frac{2}{23} - $
255.5(+)		1/33.6	1175	2 2	$(\frac{2}{9})(\frac{2}{9})$
276(1)		2176	1000.2	<u>17</u> - <u>27</u> -	$(\frac{1}{2})(\frac{1}{2})$
276(1) 295 4(2)	18(4)	941.6	646 3	$\frac{2}{7} - \frac{2}{15} -$	$\frac{2}{7} - \frac{2}{11} -$
2)3.4(2)	255(18)	946.8	646.3	$\frac{2}{15} - \frac{2}{15} - $	$\frac{2}{7} - \frac{2}{11} -$
3110(2)	7/3(82)	440 3	120.3	$\frac{2}{7} - \frac{2}{7} -$	$\frac{2}{1} + \frac{2}{7} +$
313.0(2)	743(62) 553(61)	440.3	129.5	$\frac{1}{7}$ - $\frac{1}{7}$ -	$\frac{1}{1} + \frac{1}{5} + \frac{1}{5}$
315.0(2)	555(01)	675	358.8	$\frac{\bar{2}}{1} + \frac{\bar{2}}{13} +$	$\frac{\bar{2}}{1} + \frac{\bar{2}}{11} +$
310(1) 3217(2)	53(10)	1517.0	1106.2	$\frac{\overline{2}}{23} + \frac{\overline{2}}{23} +$	$\frac{\overline{2}}{17} - \frac{\overline{2}}{19} -$
321.7(2)	33(10)	675	353	$\frac{1}{1} + \frac{1}{13} +$	$\frac{1}{1} + \frac{1}{9} + \frac{1}{2}$
322(1) 326.7(3)		685.5	358.8	$\frac{1}{1} + \frac{1}{15} +$	$\frac{\bar{2}}{1} + \frac{\bar{2}}{11} +$
340.2(3)		1123.3	783.0	$\frac{1}{7} - \frac{1}{17} - \frac{1}{17}$	$\frac{1}{7} - \frac{1}{13} - \frac{1}{13}$
340.2(3)		1324.1	041.6	$\frac{\overline{2}}{7} - \frac{\overline{2}}{19} -$	$\frac{1}{7} - \frac{1}{15} - \frac{1}{15}$
302.2(4)		1024.1	941.0 685.5	$\frac{\overline{2}}{1} + \frac{\overline{2}}{17} +$	$\frac{1}{1} + \frac{1}{15} +$
390(1) 404 6(2)	126(16)	1400.6	1005.0	$\frac{\overline{2}}{17} - \frac{\overline{2}}{21} -$	$\frac{\overline{2}}{17} - \frac{\overline{2}}{17} -$
404.0(2)	120(10)	109.0	675	$\frac{1}{1}$ + $\frac{1}{17}$ +	$\frac{1}{1} + \frac{1}{13} +$
409(1)		1102.0	695 5	$\frac{\overline{2}}{1} + \frac{\overline{2}}{19} +$	$\frac{\overline{2}}{1} + \frac{\overline{2}}{15} +$
+10.4(4)	13(8)	1103.9	005.5	$\frac{\overline{2}}{7} - \frac{\overline{2}}{7} -$	$\frac{\overline{2}}{1} + \frac{\overline{2}}{3} +$
440(1)	15(6)	440.5 1644 7	1106.2	$\frac{\overline{2}}{17} - \frac{\overline{2}}{23} - $	$\frac{\overline{2}}{17} - \frac{\overline{2}}{19} -$
440.3(3)		1044.7	1190.2	$\frac{1}{17} - \frac{1}{25} - \frac{1}{25}$	$\frac{1}{17} - \frac{1}{21} - \frac{1}{21}$
490.0(4)		1900.2	1409.0	$\frac{1}{2}$ $\frac{1}$	$\frac{1}{2}$ $\frac{1}$
512(1)	10(7)	1000.3	1103.9	$\frac{\overline{2}}{23} + \frac{\overline{2}}{23} +$	$\frac{\overline{2}}{17} - \frac{\overline{2}}{17} - $
515(1)	12(7)	1317.9	1003.0	$\frac{1}{17} - \frac{1}{27} - \frac{1}{27}$	$\frac{1}{17} - \frac{1}{23} - \frac{1}{23}$
332(1)		2170 1175	1044.7	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}$
043(1)		11/3	552.2		2 2

TABLE II. (Continued.)

E_{γ} (keV)	I_{γ}	E_i (keV)	E_f (keV)	$K_i^{\pi} J_i^{\pi}$	$K_f^{\pi} J_f^{\pi}$
690.6(3) 735(1) 993.3(3)		2124.2 1175 1433.6	1433.6 440.3 440.3	$\left(\frac{9}{2}^{-}\right)\left(\frac{9}{2}^{-}\right)$	$\frac{7}{2} - \frac{7}{2} - \frac{7}$

^aTransition unobserved; inferred from coincidence observations. ^bIntensity inferred from intensity balances.

^cTransition intensities of doublet transitions cannot be resolved.

1. $1/2^+[411]$ ground-state band

The present results are consistent with the ground-state band assignments of Pursiheimo *et al.* [22] up to the $7/2^+$ state. An energy of 342.3(3) keV for the $11/2^+$ state is consistent with the value of 339.8(25) keV for the $9/2^+$, $11/2^+$ doublet from Tarara *et al.* [23]. The $3/2^+$, $7/2^+$, $11/2^+$, ... sequence of levels ($\alpha = -1/2$ signature) has been

FIG. 9. Coincidence spectra showing transitions in ¹⁷³Tm. (a) The spectrum resulting from a sum of 152/171-keV and 115/1013-keV double coincidence gates. Inset: 700- to 1200-keV energy region. (b) Spectrum obtained from a sum of double gates on 166/(154,916,923,932)-keV and 143/(154,916,932)-keV γ -ray pairs. Inset: 750- to 950-keV energy region. (c) A 171/1013-keV-gated spectrum used for the intensity balance on the 43-keV transition. The weak 43-keV transition is shown in the expanded inset. Contaminants are labeled by filled circles.

FIG. 10. The proposed level scheme for 173 Tm. Arrow widths represent the relative γ -ray intensities. The intensities for the $21/2^+$ band include in-beam relative intensities, in order to highlight the in-band branching ratios.

extended up to the $23/2^+$ member. The $1/2^+$, $5/2^+$, $9/2^+$, ... sequence ($\alpha = +1/2$ signature) had insufficient intensity for an extension above the $5/2^+$ state, which was strongly fed by the $7/2^-$ isomer. The γ rays tentatively assigned to the $\alpha = -1/2$ signature band by Asztalos *et al.* [24] have not been observed in the present data.

2. 7/2⁻[523] isomer at 318 keV

Figure 11 provides a decay curve for the $7/2^{-}[523]$ isomer. The fit results in a lifetime of $\tau = 16(4) \ \mu$ s, consistent with the value of $\tau = 14(3) \ \mu$ s measured by Pursiheimo *et al.* [22]. A weighted mean of $\tau = 15(3) \ \mu$ s is adopted for the lifetime of this level.

The current $7/2^-$ and $9/2^-$ level assignments in the $7/2^-$ [523] rotational band agree with those of Ref. [22]. The present data also agree, within error, with the extensions of

Tarara *et al.* [23] up to the $11/2^-$ state, but their energy of 669.5(17) keV for the $13/2^-$ level does not agree with the present value of 662.3(2) keV. The present assignments extend the rotational band up to the $17/2^-$ member in the out-of-beam data and to the $21/2^-$ member using in-beam information.

3. 9/2-[514] state at 1213 keV

The present work confirms the observation of this state by Pursiheimo *et al.* [22]. It is fed weakly from the 1344-keV level, and it decays via 801- and 895-keV branches to the $7/2^{-}$ and $9/2^{-}$ members of the $7/2^{-}$ [523] band.

4. Positive-parity states at 1344, 1443, 1586, and 1751 keV

The 1344-keV level decays via high-energy transitions to the $7/2^{-}$ [523] band and via a 131-keV transition to

FIG. 11. A time spectrum showing 122/193-keV γ -ray coincidences relative to the chopped beam from the ¹⁷⁶Lu, 10μ s/40 μ s, γ - γ -clock data. The spectrum shows the decay curve for the 7/2⁻ isomer in ¹⁷³Tm.

the 9/2⁻[514] state. The 131-keV transition was observed only weakly; therefore, several independent intensity balances were performed, resulting in a conversion coefficient limit of $\alpha_T(131) \leq 0.44$, to be compared with predictions [15] of 0.16 for *E*1, 1.42 for *M*1, 1.12 for *E*2, and 10.57 for *M*2 multipolarities, respectively. This leads to an unambiguous *E*1 assignment for the 131-keV transition and a positive parity for the 1344-keV level.

The energy difference of 99 keV between the 1344- and 1443-keV levels seems too small for the 1443-keV level to be a band member. However, the states at 1586 and 1751 keV have the appearance of a rotational band built on the 1443-keV state. If this is in fact not a band, it should be considered whether either of the 241.8- or 308.7-keV transitions is of M2 character. The limits on the implied lifetime (by taking an M2 transition strength limit of ≤ 1 W.u.) would then be $\tau \geq 57$ ns for the 1751-keV state and $\tau \geq 76$ ns for the 1586-keV level. However, limits of $\tau < 5$ ns are established for the 1344-, 1443-, 1586-, and 1751-keV level lifetimes from time-difference data. The 242- and 309-keV transitions must, therefore, be of E2 character, requiring all four levels to be of positive parity.

Each of these positive-parity states is connected to the $7/2^{-}[523]$ band by high-energy E1 transitions. (M2 multipolarities can be ruled out on inspection of the interband transition branching ratios.) The E1 assignments limit the spin and parity to $11/2^{+}$ for the 1344-keV level and $13/2^{+}$ for the 1443-keV level. The interband decays from the $15/2^{+}$ (1586 keV), and $17/2^{+}$ (1751-keV) members of the $13/2^{+}$ rotational band are *K*-forbidden *E1* transitions. Their competition with in-band collective transitions will be discussed below.

5. 13/2⁻ state at 1540 keV

Several branches are observed from this level, the most intense being the high-energy interband transitions to the

 $7/2^{-}[523]$ band. The branching ratios of these transitions restrict the spin and parity to $J^{\pi} = 13/2^{\pm}$. The state appears to have an associated rotational band with levels at 1692 and 1862 keV, which are fed by 214- and 43-keV transitions from the 1906-keV $19/2^{-}$ isomer, respectively (see below for the spin-parity assignment for the $19/2^{-}$ isomer). The spin-parity assignments for the 1540-, 1692-, and 1862-keV levels can be constrained further from the multipolarity of the 43- or 214-keV transitions. By assuming that the E2/M1 mixing ratio for the 152-keV transition is consistent with that of the 171-keV transition in the same rotational band [$\delta(171 \text{ keV}) =$ 0.29(3) in Table IV], an intensity balance for the 43- and 152-keV γ rays in the 171/1013-keV double-gated spectrum of Fig. 9(c) results in $\alpha_T(43) = 8.8^{+10.3}_{-3.6}$, with the large uncertainty following from the low statistics in the 43-keV peak and the uncertainty in the efficiency calibration below 60 keV. Comparison to predictions [15] of 0.59 for E1, 5.77 for M1, 109.9 for E2, and 296 for M2 multipolarities, respectively, suggests that only an M1 multipolarity is consistent (albeit within a large uncertainty), requiring negative parity for the 1540-, 1692-, and 1862-keV levels.

6. (15/2⁻) state at 1782 keV

The excitation energy of this level (at 1664 or 1782 keV) is ambiguous, due to the inability to order the 124- and 242-keV transitions. Given the observation of a single branch to a $J^{\pi} =$ $13/2^{-}$ state, it is very likely to be an intrinsic state of negative parity. The most probable assignments are K = 15/2 or 17/2. An assignment of $K^{\pi} = (15/2^{-})$ and an excitation energy of 1782 keV are tentatively favored from hindrance arguments for the 1906-keV isomer decays.

7. 19/2⁻ isomer at 1906 keV

The lifetime of this state is deduced to be $\tau = 360(100)$ ns from the time-difference spectrum in Fig. 12. The lifetime fit

FIG. 12. A sum of time-difference spectra between the 1013keV γ ray and the 408-, 548-, and 704-keV transitions in ¹⁷³Tm. Due to the very low statistics, the time spectrum was compressed to 20 ns/channel.

starts at 50 ns, in order to avoid a possible prompt contaminant component at the start of the time curve.

The isomer is characterized by several decay branches, the strongest (in total intensity) being the 43-keV M1 transition to the 1862-keV state and the 154-keV transition to the 1751-keV $17/2^+$ level. In order to find the spin-parity assignment for the isomer at 1906 keV, two independent intensity balances were performed for the 154-keV decay branch using E2/M1 mixing ratios deduced from Table IV. In the first, the 154-keV transition was balanced against the sum of 115- and 209-keV transition intensities in a sum of (143,166,309)/916-keV double-gated spectra, leading to $\alpha_T(154) = 0.07(31)$. In the second, the 154- and 166-keV transitions were balanced in a spectrum produced from a sum of 143/(780,818,916,932)-keV double gates, leading to $\alpha_T(154) = 0.04(27)$. Predicted values of 0.11 (E1), 0.90 (M1), 0.63 (E2), and 5.9 (M2) confirm an E1 assignment. A strong E1 branch to the 1586-keV level would also be expected if the isomer had an assignment of $17/2^{-}$ or lower; therefore the spin and parity are restricted to $K^{\pi} = 19/2^{-}$.

Structures above the isomer were studied by examining γ rays both in-beam and out of beam that were measured 30–800 ns early with respect to the intense 1013-keV transition. The rotational band built on the 1906-keV 19/2⁻ state was identified in this way. It is fed by a higher lying isomer and is clear in a sum of double-gated spectra in the out-of-beam γ - γ - γ cube in Fig. 13. The spectrum also shows the 152- and 171-keV lines from below the isomer in weak coincidence [across the 360(100)-ns isomer].

8. 21/2⁺ isomer at 2061 keV

The transitions associated with the band built on the 2061-keV state are presented in Figs. 14(a) and 14(b). The 2061-keV level has a single, 155-keV decay branch to the $19/2^-$ isomer at 1906 keV. By assuming that the E2/M1 mixing ratio for the 185-keV transition is the same as for the 198-keV transition in the same rotational band [$\delta(198 \text{ keV}) = 1.41(40)$ in Table IV], an intensity balance was performed for the 155-, 185-, and 382-keV transitions using the spectrum

FIG. 13. Spectrum showing the rotational band built on the $19/2^{-}$ 1906-keV state in ¹⁷³Tm, obtained from a sum of 482/548and 482/704-keV double gates in the out-of-beam γ - γ - γ cube. Contaminants are labeled with filled circles.

FIG. 14. Spectra showing γ rays from the 21/2⁺ band in ¹⁷³Tm. (a) Spectrum sorted with a requirement that events occur in-beam, and 30-800 ns early with respect to an out-of-beam 1013-keV transition. (b) A 155-keV-gated spectrum from a matrix produced by projecting in-beam coincidence pairs that are detected 30–800 ns earlier than an out-of-beam 1013-keV transition. Contaminants are labeled with filled circles.

from Fig. 14(a), yielding $\alpha_T(155) = 0.08(17)$. Predicted values of 0.10 (*E*1), 0.89 (*M*1), 0.62 (*E*2), and 5.8 (*M*2) suggest an *E*1 assignment, making the 2061-keV level either $J^{\pi} = 19/2^+$ or $21/2^+$. A $K^{\pi} = 21/2^+$ assignment is strongly favored from the $|g_K - g_R|$ value and the three-quasiparticle states expected in this nucleus (see further discussion below).

In order to measure the lifetime of the $21/2^+$ state, a γ -beam matrix was constructed requiring γ rays that are observed 30 to 800 ns early with respect to 152/1013-keV or 171/1013-keV γ -ray pairs. A gate on the 155-keV line in this matrix gives the absolute time spectrum for this γ ray with respect to the beam pulse and is shown in Fig. 15. A lifetime of 22(8) ns was deduced for the 2061-keV state.

9. 35/2⁻ isomer at 4048 keV

The 4048-keV isomer decays by a strong 704-keV transition to the $31/2^-$ member of the $19/2^-$ band and a much weaker 412-keV branch to the $33/2^-$ member, as well as a weak, 655-keV branch to the $33/2^+$ member of the $21/2^+$ band. These branches, along with the nonobservation of a decay to the $31/2^+$ level at 3130 keV, imply a likely spin and parity of $35/2^{\pm}$. The $35/2^+$ option would imply that the 704-keV transition is of *M*2 character, with a strength that is only consistent with a transition between specific one-quasiparticle configurations and, therefore, very unlikely in the present case. A $K^{\pi} = 35/2^-$ assignment is, therefore, adopted for this state. A lifetime of $\tau = 175(40)$ ns was determined for the $35/2^$ isomer from the fit in Fig. 16.

FIG. 15. Time curve for the $21/2^+$ isomer in ¹⁷³Tm, produced from a 155-keV gate in a γ -beam matrix. The dotted line represents the time curve for a prompt γ ray with a similar energy.

10. Summary of energy levels and γ rays associated with ¹⁷³Tm

Properties including γ -ray energies and intensities, initial and final level energies, and spin-parity assignments of transitions assigned to ¹⁷³Tm are summarized in Table III. Gamma-ray intensities are normalized to the prominent 171-keV line. For ¹⁷⁵Tm (Table II), the intensities of γ rays from each level were deduced from the measured branching ratios, by taking into account the total intensity feeding into that state and γ -ray conversion coefficients from Ref. [15]. The quoted intensity errors account for the uncertainties in branching ratios, feeding intensities, and conversion coefficients.

V. CONFIGURATION ASSIGNMENTS, DECAY HINDRANCES, AND BAND PROPERTIES

The structure of these odd-A nuclei is expected to be similar to that of the neighboring even-even core nuclei, but with the unpaired proton coupled to the *n*-quasiparticle structures (where n = 0, 2, 4, 6, ...). Comparisons with the neighboring

FIG. 16. A time curve for the $35/2^{-1}$ isomer in ¹⁷³Tm. The points represent the sum of 195-, 214-, 408-, and 483-keV γ -ray intensities from 548/704-keV double-gated spectra, from six contiguous time regions in the out-of-beam data.

$F \Pi I SICAL KEVIEW C 60. 034314 (2012)$
--

TABLE III. Transitions assigned to ¹⁷³Tm.

$\overline{E_{\gamma}}$	I_{γ}	E_i	E_{f}	$K_i^{\pi} J_i^{\pi}$	$K^{\pi}_{f} J^{\pi}_{f}$
(keV)	-	(keV)	(keV)		5 5
43.4(6)	272(68) ^a	1905.7	1862.3	$\frac{19}{2} - \frac{19}{2} - \frac{19}{2}$	$\frac{13}{2} - \frac{17}{2} - \frac{17}{2}$
87(1)	5(3)	1442.7	1356	$\frac{13}{2} + \frac{13}{2} +$	$(\frac{11}{2})(\frac{11}{2})$
93.9(1)	526(104)	411.6	317.7	$\frac{7}{2} - \frac{9}{2} -$	$\frac{7}{2} - \frac{7}{2}$
98.9(3)	33(10)	1442.7	1343.9	$\frac{13}{2} + \frac{13}{2} +$	$\frac{11}{2} + \frac{11}{2} +$
114.9(1)	695(132)	526.5	411.6	$\frac{7}{2} - \frac{11}{2} -$	$\frac{7}{2} - \frac{9}{2} -$
116.1(3)	23(8)	118.6	2.5	$\frac{1}{2} + \frac{5}{2} +$	$\frac{1}{2} + \frac{3}{2} +$
118.6(2)	181(30)	118.6	0	$\frac{1}{2} + \frac{5}{2} +$	$\frac{1}{2} + \frac{1}{2} +$
122.4(2)	211(35)	124.9	2.5	$\frac{1}{2} + \frac{7}{2} +$	$\frac{1}{2} + \frac{3}{2} +$
124(1)	9(5)	1905.7	(1782)	$\frac{19}{2} - \frac{19}{2} - \frac{19}{2}$	$\left(\frac{15}{2}^{-}\right)\left(\frac{15}{2}^{-}\right)$
131.4(3)	41(14)	1343.9	1212.9	$\frac{1}{12} + \frac{1}{12} +$	$\frac{9}{2} - \frac{9}{2}$
135.7(1)	373(80)	662.3	526.5	$\frac{7}{2} - \frac{13}{2} -$	$\frac{7}{2} - \frac{1}{12} -$
142.9(2)	112(20)	1585.6	1442.7	$\frac{13}{2} + \frac{15}{2} +$	$\frac{13}{2} + \frac{13}{2} +$
151.6(1)	780(84)	1691.5	1539.9	$\frac{13}{2} - \frac{15}{2} -$	$\frac{13}{2} - \frac{13}{2} - \frac{13}{2}$
154.3(2)	440(44)	1905.7	1751.4	$\frac{19}{2} - \frac{19}{2} - \frac{19}{2}$	$\frac{13}{2} - \frac{17}{2} -$
155.4(1)		2061.1	1905.7	$\frac{21}{2} + \frac{21}{2} +$	$\frac{19}{2} - \frac{19}{2} - \frac{19}{2}$
155.9(1)	143(39)	818.2	662.3	$\frac{7}{2} - \frac{15}{2} -$	$\frac{2}{7} - \frac{13}{2} - \frac{13}{2}$
165.8(3)	189(27)	1751.4	1585.6	$\frac{13}{13} + \frac{17}{17} +$	$\frac{13}{13} + \frac{15}{15} +$
170.8(1)	1000(58)	1862.3	1691.5	$\frac{13}{12} - \frac{17}{17} -$	$\frac{13}{12} - \frac{15}{15} -$
176.9(3)	26(13)	995.2	818.2	$\frac{2}{7} - \frac{2}{17} - \frac{17}{2}$	$\frac{2}{7} - \frac{15}{15} -$
184(1)	45(11)	1539.9	1356	$\frac{13}{13} - \frac{13}{13} - \frac{13}{13}$	$\binom{2}{(\frac{11}{2})} \binom{2}{(\frac{11}{2})}$
184.7(1)	- ()	2245.8	2061.1	$\frac{2}{23} + \frac{2}{21} +$	$\frac{21}{21} + \frac{21}{21} + 21$
192.8(2)	516(50)	317.7	124.9	$\frac{2}{7} - \frac{2}{7} - \frac{2}{7}$	$\frac{2}{1} + \frac{2}{7} +$
194.6(1)	298(104)	2100.4	1905.7	$\frac{19}{19} - \frac{21}{21} - \frac{10}{10}$	$\frac{19}{19} - \frac{19}{19} - \frac{19}{19} - \frac{19}{19}$
195.8(2)	132(27)	1539.9	1343.9	$\frac{13}{13} - \frac{13}{13} - \frac{13}{13}$	$\frac{11}{11} + \frac{11}{11} +$
196(1)	102(27)	1191	995.2	$\frac{2}{7} - \frac{2}{19} - \frac{19}{2}$	$\frac{2}{7} - \frac{2}{17} - \frac{17}{2}$
197.8(2)		2443.5	2245.8	$\frac{2}{21} + \frac{2}{25} +$	$\frac{2}{21} + \frac{2}{23} + \frac{2}{23} + \frac{2}{23}$
199.2(2)	532(50)	317.7	118.6	$\frac{2}{7} - \frac{2}{7} - \frac{2}{7}$	$\frac{2}{1} + \frac{2}{5} +$
208.7(2)	63(15)	526.5	317.7	$\frac{2}{7} - \frac{2}{11} -$	$\frac{2}{7} - \frac{2}{7} - \frac{2}{7}$
212(1)	()	2655.9	2443.5	$\frac{2}{21} + \frac{2}{27} +$	$\frac{2}{21} + \frac{2}{25} +$
213.7(1)	196(60)	2314.1	2100.4	$\frac{2}{19} - \frac{2}{23} - \frac{2}{23}$	$\frac{2}{19} - \frac{2}{21} - \frac{2}{10}$
214.3(4)	102(15)	1905.7	1691.5	$\frac{2}{19} - \frac{2}{19} - \frac{2}{19} - \frac{2}{19}$	$\frac{2}{13} - \frac{2}{15} -$
216(1)	102(10)	1407	1191	$\frac{2}{7} - \frac{2}{21} -$	$\frac{2}{7} - \frac{2}{19} -$
217.4(3)		342.3	124.9	$\frac{2}{1} + \frac{2}{11} +$	$\frac{2}{1} + \frac{2}{7} +$
229(1)		2885	2655.9	$\frac{2}{21} + \frac{2}{29} +$	$\frac{2}{21} + \frac{2}{27} + \frac{2}{27} + \frac{2}{27}$
232.4(4)	46(27)	2546.5	2314.1	$\frac{1}{19} - \frac{2}{25} - \frac{1}{25}$	$\frac{2}{19} - \frac{2}{23} - \frac{2}{23}$
241.8(6)	14(4)	1585.6	1343.9	$\frac{2}{13} + \frac{2}{15} +$	$\frac{2}{11} + \frac{2}{11} +$
242(1)	15(8)	(1782)	1539.9	$\left(\frac{15}{15}^{-}\right)\left(\frac{15}{15}^{-}\right)$	$\frac{2}{13} - \frac{2}{13} - \frac{2}{13}$
245(1)	15(0)	3130	2885	(2) + 31 + 31 + 31 + 31 + 31 + 31 + 31 + 3	$\frac{2}{21} + \frac{2}{29} +$
213(1) 2501(4)	87(25)	2796.6	2546.5	$\frac{2}{19} - \frac{2}{27} -$	$\frac{2}{19} - \frac{2}{25} -$
250.1(+) 250.5(2)	71(7)	662.3	411.6	$\frac{2}{7} - \frac{2}{13} -$	$\frac{2}{7} - \frac{2}{9} -$
250.5(2)	/1(/)	3393	3130	$\frac{2}{21} + \frac{2}{33} + $	$\frac{2}{21} + \frac{2}{31} + $
262(1)	15(12)	3063 3	2796.6	$\frac{2}{19} - \frac{2}{29} -$	$\frac{2}{19} - \frac{2}{27} -$
281(1)	57(18)	3344 4	3063 3	$\frac{2}{19} - \frac{\overline{2}}{31} -$	$\frac{2}{19} - \frac{2}{29} -$
201(1)	A(3)	3635.8	3344 4	$\frac{1}{19} - \frac{1}{33} - \frac{1}{33}$	$\frac{1}{19} - \frac{1}{31} - \frac{1}{10}$
291(1) 201 5(1)		818 7	667 2	$\frac{1}{2}$ $\frac{1}{15}$ -	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{11}$ -
291.3(1) 308 7(4)	54(11)	1751 A	1442.5	$\frac{\overline{2}}{13} + \frac{\overline{2}}{17} +$	$\frac{\overline{2}}{13} + \frac{\overline{2}}{13} +$
300.7(4)	J+(11)	6516	3/2 2	$\overline{\frac{2}{1}}$ + $\overline{\frac{2}{15}}$ +	$\frac{1}{1} + \frac{1}{11} +$
309.3(3)		0.1.0	542.3	$\overline{2}$ $\overline{2}$	2 2

TABLE III. (Continued.)

E_{γ}	I_{γ}	E_i	E_{f}	$K_i^{\pi} J_i^{\pi}$	$K^{\pi}_{f} J^{\pi}_{f}$
(keV)		(keV)	(keV)		
322.2(3)	180(14)	1862.3	1539.9	$\frac{13}{2} - \frac{17}{2} - \frac{17}{2}$	$\frac{13}{2} - \frac{13}{2} - \frac{13}{2}$
332.9(4)	16(8)	995.2	662.3	$\frac{2}{7} - \frac{17}{2} -$	$\frac{2}{7} - \frac{13}{2} - \frac{13}{2}$
373(1)	. ,	1191	818.2	$\frac{2}{7} - \frac{19}{19} -$	$\frac{2}{7} - \frac{15}{2} -$
382.4(2)		2443.5	2061.1	$\frac{2}{21} + \frac{2}{25} +$	$\frac{2}{21} + \frac{2}{21} $
396.4(4)		1048.0	651.6	$\frac{1}{2}^{+} \frac{19}{2}^{+}$	$\frac{1}{2}^{+}$ $\frac{15}{2}^{+}$
408.4(1)	257(77)	2314.1	1905.7	$\frac{19}{2} - \frac{23}{2} -$	$\frac{19}{2} - \frac{19}{2} -$
410.1(2)		2655.9	2245.8	$\frac{21}{2} + \frac{27}{2} +$	$\frac{21}{2} + \frac{23}{2} +$
412(1)		1407	995.2	$\frac{7}{2} - \frac{21}{2} -$	$\frac{7}{2} - \frac{17}{2} -$
412(1)	63(21)	4047.9	3635.8	$\frac{35}{2} - \frac{35}{2} - \frac{35}{2}$	$\frac{19}{2} - \frac{33}{2} -$
441.5(3)		2885	2443.5	$\frac{21}{2} + \frac{29}{2} +$	$\frac{\tilde{21}}{2} + \frac{2\tilde{5}}{2} +$
446.1(3)	147(62)	2546.5	2100.4	$\frac{19}{2} - \frac{25}{2} -$	$\frac{19}{2} - \frac{21}{2} -$
474(1)		3130	2655.9	$\frac{21}{2} + \frac{31}{2} +$	$\frac{21}{2} + \frac{27}{2} +$
479(1)		1527	1048.0	$\frac{1}{2}^{+}$ $\frac{23}{2}^{+}$	$\frac{1}{2}^{+}$ $\frac{19}{2}^{+}$
482.5(1)	445(105)	2796.6	2314.1	$\frac{19}{2} - \frac{27}{2} -$	$\frac{19}{2} - \frac{23}{2} -$
508(1)		3393	2885	$\frac{21}{2} + \frac{33}{2} +$	$\frac{21}{2} + \frac{29}{2} +$
516.8(4)	103(47)	3063.3	2546.5	$\frac{19}{2} - \frac{29}{2} -$	$\frac{19}{2} - \frac{25}{2} -$
547.8(1)	529(104)	3344.4	2796.6	$\frac{19}{2} - \frac{31}{2} -$	$\frac{19}{2} - \frac{27}{2} -$
572.5(3)	58(23)	3635.8	3063.3	$\frac{19}{2} - \frac{33}{2} - \frac{19}{2}$	$\frac{19}{2} - \frac{29}{2} -$
655(1)	33(19)	4047.9	3393	$\frac{\overline{35}}{2} - \frac{3\overline{5}}{2} - \frac{3\overline{5}}{2}$	$\frac{\tilde{21}}{2} + \frac{3\tilde{3}}{2} +$
680(2)	9(5)	1343.9	662.3	$\frac{11}{2}^{+}$ $\frac{11}{2}^{+}$	$\frac{7}{2}^{-}$ $\frac{13}{2}^{-}$
694(1)	10(5)	1356	662.3	$\left(\frac{\tilde{1}1}{2}\right)\left(\frac{\tilde{1}1}{2}\right)$	$\frac{\tilde{7}}{2} - \frac{\tilde{13}}{2} -$
696.3(5)	34(17)	1691.5	995.2	$\frac{13}{2} - \frac{15}{2} - \frac{15}{2}$	$\frac{7}{2} - \frac{17}{2} - \frac{17}{2}$
703.5(1)	585(92)	4047.9	3344.4	$\frac{\overline{35}}{2} - \frac{\overline{35}}{2} - \frac{\overline{35}}{2}$	$\frac{19}{2} - \frac{31}{2} -$
721.3(1)	127(18)	1539.9	818.2	$\frac{13}{2} - \frac{13}{2} - \frac{13}{2}$	$\frac{\tilde{7}}{2} - \frac{1\tilde{5}}{2} -$
756.5(4)	24(8)	1751.4	995.2	$\frac{13}{2}^{+}$ $\frac{17}{2}^{+}$	$\frac{\bar{7}}{2} - \frac{\bar{17}}{2} -$
767.8(3)	17(5)	1585.6	818.2	$\frac{13}{2} + \frac{15}{2} +$	$\frac{\tilde{7}}{2} - \frac{\tilde{15}}{2} - \frac{1}{2}$
780.4(2)	26(6)	1442.7	662.3	$\frac{13}{2}^{+}$ $\frac{13}{2}^{+}$	$\frac{\bar{7}}{2} - \frac{\bar{13}}{2} -$
801.3(4)	8(4)	1212.9	411.6	$\frac{9}{2} - \frac{9}{2} - \frac{9}{2}$	$\frac{7}{2} - \frac{9}{2} - \frac{1}{2}$
817.8(4)	40(18)	1343.9	526.5	$\frac{11}{2} + \frac{11}{2} + \frac{11}{2}$	$\frac{7}{2}^{-}$ $\frac{1}{2}^{-}$
830(1)	17(8)	1356	526.5	$\left(\frac{\overline{11}}{2}\right)\left(\frac{\overline{11}}{2}\right)$	$\frac{\overline{7}}{2} - \frac{\overline{11}}{2} - \frac{\overline{11}}{2}$
873.3(3)	51(17)	1691.5	818.2	$\frac{13}{2} - \frac{15}{2} - \frac{15}{2}$	$\frac{7}{2}^{-}$ $\frac{15}{2}^{-}$
877.6(7)	348(44)	1539.9	662.3	$\frac{13}{2} - \frac{13}{2} - \frac{13}{2}$	$\frac{7}{2} - \frac{13}{2} - \frac{13}{2}$
895.2(6)	40(16)	1212.9	317.7	$\frac{9}{2} - \frac{9}{2} - \frac{9}{2}$	$\frac{7}{2} - \frac{7}{2} - \frac{7}{2}$
916.1(2)	119(24)	1442.7	526.5	$\frac{13}{2}^{+}$ $\frac{13}{2}^{+}$	$\frac{7}{2}^{-}$ $\frac{11}{2}^{-}$
923.3(3)	55(11)	1585.6	662.3	$\frac{13}{2}^{+}$ $\frac{15}{2}^{+}$	$\frac{7}{2}^{-}$ $\frac{13}{2}^{-}$
932.2(4)	175(47)	1343.9	411.6	$\frac{11}{2}^{+}$ $\frac{11}{2}^{+}$	$\frac{7}{2}^{-}$ $\frac{9}{2}^{-}$
933(6)	83(21)	1751.4	818.2	$\frac{13}{2}^{+}$ $\frac{17}{2}^{+}$	$\frac{7}{2}^{-}$ $\frac{15}{2}^{-}$
945(1)	49(16)	1356	411.6	$(\frac{11}{2})(\frac{11}{2})$	$\frac{7}{2}^{-}$ $\frac{9}{2}^{-}$
1013.3(1)	1103(126)	1539.9	526.5	$\frac{13}{2} - \frac{13}{2} - \frac{13}{2}$	$\frac{7}{2}^{-}$ $\frac{11}{2}^{-}$
1029.2(2)	194(36)	1691.5	662.3	$\frac{13}{2}^{-}$ $\frac{15}{2}^{-}$	$\frac{7}{2}^{-}$ $\frac{13}{2}^{-}$
1128.1(2)	118(17)	1539.9	411.6	$\frac{13}{2} - \frac{13}{2} - \frac{13}{2}$	$\frac{7}{2} - \frac{9}{2} - \frac{9}{2}$
1165(1)	10(6)	1691 5	526.5	13 - 15 -	7 - 11 -

^aIntensity inferred from intensity balances.

erbium, ytterbium, and lutetium isotones, therefore, play a role in the configuration assignments.

The configuration of a strongly coupled rotational band is reflected in its in-band decay properties, such as the competition between E2 crossover and M1 cascade transitions, which can be examined via the γ -ray intensity branching ratio,

TABLE IV. In-band decay properties for rotational bands in ¹⁷³Tm.

J^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	λ	$ \delta $	$ g_K - g_R ^a$
$7/2^{-}$	318 keV				
$11/2^{-}$	114.9	208.7	0.09(2)	0.15(3)	0.99^{+14}_{-10}
$13/2^{-}$	135.7	250.5	0.19(3)	0.14(2)	1.04^{+10}_{-7}
$15/2^{-}$	155.9	291.5	0.36(6)	0.15(2)	0.98^{+10}_{-7}
$17/2^{-}$	176.9	332.9	0.63(22)	0.16(6)	0.90^{+22}_{-13}
$19/2^{-}$	196	373	0.67(20) ^b	0.14(4)	1.04^{+20}_{-13}
$13/2^{+}$	1443 keV				
$17/2^+$	165.8	308.7	0.29(5)	0.39(7)	0.35^{+4}_{-3}
$13/2^{-}$	1540 keV				
$17/2^{-}$	170.8	322.2	0.18(2)	0.29(3)	0.49^{+3}_{-3}
$19/2^{-}$	1906 keV				
$23/2^{-}$	213.7	408.4	1.3(2)	2.09(38)	0.06^{+3}_{-4}
$25/2^{-}$	232.4	446.1	3.2(16)	4.3(22)	$0.03^{+10}_{-(nd)}$ c
$27/2^{-}$	250.1	482.5	5.1(11)	3.67(82)	$0.03^{+4}_{-(nd)}$ c
$29/2^{-}$	267	516.8	6.8(49)	2.8(21)	$0.05^{+18}_{-(nd)}$ c
$31/2^{-}$	281	547.8	9.3(27)	3.11(91)	$0.04^{+5}_{-(nd)}$ c
$21/2^{+}$	2061 keV				
$25/2^+$	197.8	382.4	1.01(29) ^b	1.41(40)	0.08^{+4}_{-3}
$27/2^+$	212	410.1	2.76(123) ^b	2.7(12)	$0.04^{+7}_{-(nd)}$ c
29/2+	229	441.5	3.64(227) ^b	1.8(11)	$0.06^{+11}_{-(nd)}$ ^c

^aAssuming $Q_0 = 7.4(3) e b$ [25].

^bBranching ratio deduced from in-beam intensities.

^cnd: Not defined.

given by

$$\lambda = \frac{I_{\gamma}(J \to J - 2)}{I_{\gamma}(J \to J - 1)}.$$
(1)

Within the rotational model, it is possible to extract the E2/M1 mixing ratios, δ , for the $J \rightarrow (J-1)$ transition and the $(g_K - g_R)/Q_0$ ratio from the observed branching ratio, λ , using the relations

$$\frac{1}{\delta^2} = \frac{1}{\lambda} \left[\frac{E_{\gamma}(J \to J - 2)}{E_{\gamma}(J \to J - 1)} \right]^5 \frac{\langle JK20 \mid J - 2K \rangle^2}{\langle JK20 \mid J - 1K \rangle^2} - 1 \quad (2)$$

and

$$\frac{g_K - g_R}{Q_0} = 0.933 \frac{E_{\gamma}(J \to J - 1)}{(\sqrt{J^2 - 1})\delta}.$$
 (3)

The in-band properties for measured rotational bands in ¹⁷³Tm and ¹⁷⁵Tm are presented in Tables IV and V. Table VI compares (where available) experimentally measured $|g_K - g_R|$ values to empirical predictions for ¹⁷³Tm and ¹⁷⁵Tm.

Figure 17 presents the net rotational alignment for bands observed in ¹⁷³Tm and ¹⁷⁵Tm. In both plots, reference parameters are chosen so that the average alignment for the two signatures of the $1/2^+[411]$ band is approximately zero. This requirement is equivalent to subtracting a reference representing the core contribution to the alignment. The $7/2^-[523]$ bands in both nuclei exhibit a slight signature splitting at higher spin, as expected for a member of the $h_{11/2}$ proton multiplet since significant Coriolis mixing is present.

TABLE V. In-band decay properties for rotational bands in ¹⁷⁵Tm.

J^{π}	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	λ	$ \delta $	$ g_K - g_R ^{\rm a}$
7/2-	440 keV				
$11/2^{-}$	114.1	206.2	0.11(2)	0.17(3)	0.86^{+9}_{-7}
$13/2^{-}$	136.8	250.9	0.25(4)	0.16(2)	0.88^{+8}_{-6}
$15/2^{-}$	158.6	295.4	0.47(13)	0.17(5)	0.85^{+15}_{-10}
$17/2^{-}$	181.6	340.2	0.66(15) ^b	0.17(4)	0.88^{+12}_{-9}
$19/2^{-}$	200.5	382.2	0.69(22) ^b	0.14(4)	1.03^{+22}_{-14}
$17/2^{-}$	1005 keV				
$21/2^{-}$	213.4	404.6	0.15(2)	0.31(4)	0.45^{+4}_{-3}
$23/2^{-}$	235.1	448.5	0.32(14) ^b	0.30(13)	0.46^{+17}_{-8}
$25/2^{-}$	255.5	490.6	0.47(43) ^b	0.29(26)	0.48^{+43}_{-15}
27/2-	276	532	0.36(16) ^b	0.21(10)	0.67^{+24}_{-12}

^aTaking $Q_0 = 7.3(2) e b$ [26].

^bBranching ratio deduced from in-beam intensities.

A. The 7/2⁻[523] Nilsson orbital

The $7/2^{-}[523]$ state is the lowest lying intrinsic excitation in ¹⁷¹Tm, ¹⁷³Tm, and ¹⁷⁵Tm. The state is isomeric, decaying primarily via E1 transitions to the $J^{\pi} = 5/2^+$ and $7/2^+$ members of the $1/2^+$ [411] rotational band in each isotope. The hindrance values of decay branches from the $7/2^{-}[523]$ isomer in ¹⁷⁵Tm are given in Table VII, while those for ¹⁷³Tm are listed in Table VIII. E1 transitions are often intrinsically hindered relative to Weisskopf estimates [33]. To account for this, Tables VII and VIII include corrected E1 reduced hindrances (in italics) in which a somewhat arbitrary reduction factor of 10⁴ for the hindrance values has been assumed. In 173 Tm, only the E1 transitions are observed, with reduced hindrance f_{ν} values that are very large. A limit is given for the unobserved 315-keV M2 transition that also implies a large hindrance value. The reduced hindrances of the equivalent E1transitions in ¹⁷⁵Tm are within the $f_{\nu} \sim 30-200$ range expected

TABLE VI. Comparison of experimental $|g_K - g_R|$ and predicted $g_K - g_R$ values for expected configurations in ¹⁷³Tm and ¹⁷⁵Tm.

K^{π}	Configurati	on	$g_K - g_R^{a}$	$ g_K - g_R $
	ν	π	predicted	measured
¹⁷³ Tm				
$7/2^{-}$		7/2-[523]	+1.01	0.99(10)
$11/2^{+}$	5/2-[512] 7/2-[514]	$\downarrow 1/2^{+}[411]$	-0.17(8)	
$13/2^{+}$	5/2-[512] 7/2-[514]	$\uparrow 1/2^{+}[411]$	-0.44(7)	0.35(4)
$13/2^{-}$	7/2+[633] 7/2-[514]	$\downarrow 1/2^{+}[411]$	-0.10(8)	0.49(3) ^b
$13/2^{-}$	5/2-[512] 9/2+[624]	$\downarrow 1/2^{+}[411]$	-0.48(9)	
$15/2^{-}$	7/2+[633] 7/2-[514]	$\uparrow 1/2^{+}[411]$	-0.34(7)	_
$19/2^{-}$	5/2-[512] 7/2-[514]	7/2-[523]	0.14(8)	0.04(3)
$21/2^+$	7/2+[633] 7/2-[514]	7/2-[523]	0.16(8)	0.06(4)
$21/2^+$	5/2-[512] 9/2+[624]	7/2-[523]	-0.08(8)	
$35/2^{-}$	7/2+[633] 5/2-[512]	7/2-[523]	-0.14(7)	_
	7/2 ⁻ [514] 9/2 ⁺ [624]			
¹⁷⁵ Tm				
7/2-		7/2-[523]	+1.01	0.88(9)
$15/2^{-}$	7/2-[514] 9/2+[624]	$\downarrow 1/2^{+}[411]$	-0.19(8)	_
$17/2^{-}$	7/2-[514] 9/2+[624]	$\uparrow 1/2^{+}[411]$	-0.39(7)	0.46(6)
$23/2^+$	$7/2^{-}[514] 9/2^{+}[624]$	7/2-[411]	0.07(8)	_

^a g_{Ω} values are determined from various empirical measurements [19, 21,27–31]; g_R values are from [32].

^bSee text for a discussion of the 1540-keV 13/2⁻ state.

for normal *K*-forbidden transitions [34,35]. The hindrance for the 440-keV *M*2 transition is, however, quite large.

B. Three-quasiparticle states in ¹⁷⁵Tm

1. $15/2^{-}$ and $17/2^{-}$ states at 947 and 1005 keV

The low-lying $K^{\pi} = 8^{-}$ isomer constructed from the $\nu 7/2^{-}[514]9/2^{+}[624]$ neutron configuration is well known in

FIG. 17. Net rotational alignment in ¹⁷³Tm and ¹⁷⁵Tm. A reference with Harris parameters $\mathfrak{I}_0 = 40.9 \hbar^2/\text{MeV}$ and $\mathfrak{I}_1 = 42.7 \hbar^4/\text{MeV}^3$ for ¹⁷³Tm and $\mathfrak{I}_0 = 38.0 \hbar^2/\text{MeV}$ and $\mathfrak{I}_1 = 57.5 \hbar^4/\text{MeV}^3$ for ¹⁷⁵Tm has been subtracted from the observed total alignments. Dashed lines are the sum of empirical neutron and proton alignments that make up the indicated multiquasiparticle configuration (see the text).

$\overline{E_{\gamma}}$	I_{γ}	σL	α_T	$B(\sigma L)^{a}$	F_W	ν	f_{ν}^{b}
(keV)	relative						
7/2- [440	keV, $\tau = 460(50)$	ns]					
87	13(9)	E1	0.481	$1.9(13) \times 10^{-8}$	$1.1(8) \times 10^{8}$	2	$1.0(4) \times 10^4$; 103(40)
311	743(82)	E1	0.018	$2.4(4) \times 10^{-8}$	$8.5(15) \times 10^7$	2	$9.2(8) \times 10^3$; $92(8)$
313	553(61)	E1	0.017	$1.7(3) \times 10^{-8}$	$1.2(2) \times 10^8$	2	$1.1(1) \times 10^4$; 108(10)
440	13(8)	M2	0.176	0.09(6)	578(364)	1	578(364)
15/2- [94	$7 \text{ keV}, \tau = 64(3) \text{ r}$	ns]					
5.2	< 0.13°	(<i>M</i> 1)	701 [°]	$< 6.2 \times 10^{-4}$	>2906	3	>14
163.8	566(35)	<i>M</i> 1	0.763	$8.6(10) \times 10^{-5}$	$2.1(3) \times 10^4$	3	28(1)
300.6	255(18)	E2	0.071	0.99(12)	57.6(72)	2	8(1)
23/2+ [15	18 keV, $\tau = 30(20$)) μs]					
108.3	1000(56)	E1	0.270	$1.2(8) \times 10^{-8}$	$1.7(11) \times 10^8$	2	$1.3(5) \times 10^4$; 129(45)
321.7	53(10)	M2	0.474	0.03(2)	$1.9(13) \times 10^3$	1	$1.9(13) \times 10^3$
513	12(7)	E3	0.047	55(49)	33(29)	0	_

TABLE VII. Decay information for isomers in ¹⁷⁵Tm. For transitions of multipolarity, σL , transition strengths [B(σL)], hindrances (F_W), and reduced hindrances (f_v) are given.

 $\overline{{}^{a}B(EL)}$ units are $(e^2 \text{ fm}^{2L})$ and B(ML) units are $(\mu_N^2 \text{ fm}^{2L-2})$.

^bValues in italics include an additional factor of 10^4 in the expected single-particle hindrance for E1 transitions (see text).

 ${}^{c}I_{\gamma}$ for the unobserved, 5.2-keV transition is estimated from the sum of total intensities of 159- and 295-keV γ rays under the assumption of pure *M*1 multipolarity (see text for details).

the N = 106 isotones (at 1112 keV in ¹⁷⁴Er [3,4] and 1050 keV in ¹⁷⁶Yb [36]). In ¹⁷⁷Lu [37], the same neutron configuration couples to the ground-state 7/2⁺[404] proton, to give a K^{π} = 23/2⁻ isomer at 970 keV. It seems reasonable to presume that the 15/2⁻ and 17/2⁻ states in ¹⁷⁵Tm are associated with the same v^2 [8⁻] configuration, coupled parallel and antiparallel to the 1/2⁺[411] ground-state proton, as depicted in Fig. 18.

Table VI shows good agreement between the experimental and predicted $g_K - g_R$ values for the $17/2^-$ band [$\pm 0.46(6)$ and -0.39(7), respectively], lending strong support to the assignment.

A reasonably large rotational alignment is associated with the $17/2^-$ band, as indicated in Fig. 17. This is consistent with the presence of an $i_{13/2}$ neutron component in the configuration. Since the $1/2^+$ [411] proton should contribute very little rotational alignment, the $17/2^-$ band alignment can be compared directly to the alignment for the $v7/2^-$ [514]9/2⁺[624], 8⁻ band in ¹⁷⁶Yb [38,39] (with a reference appropriate for the ground-state band in ¹⁷⁶Yb), as indicated by the dotted line that matches the $17/2^-$ band alignment in Fig. 17. The good agreement gives further support to a $v7/2^-$ [514]9/2⁺[624] $\otimes \pi 1/2^+$ [411] configuration assignment for the $17/2^-$ state, as

E_{γ} (keV)	I_{γ} relative	σL	α_T	$B(\sigma L)^{a}$	F_W	ν	$f_{ u}{}^{b}$
	1 1 15(2)	1					
7/2 [318	keV, $\tau = 15(3) \mu$	s		_			
193	516(50)	E1	0.059	$2.7(7) \times 10^{-9}$	$7.3(18) \times 10^8$	2	$2.7(3) \times 10^4$; 270(33)
199	532(50)	E1	0.054	$2.6(6) \times 10^{-9}$	$7.8(19) \times 10^8$	2	$2.8(3) \times 10^4$; 278(34)
315	<20	M2	0.508	$<3 \times 10^{-2}$	$> 1.8 \times 10^{3}$	1	$> 1.8 \times 10^{3}$
19/2 ⁻ [19	06 keV, $\tau = 360(1$	00) ns]					
43.4	272(68) ^c	M1	5.77	$2.0(8) \times 10^{-4}$	$8.8(34) \times 10^3$	2	94(19)
154.3	440(44)	E1	0.106	$8.1(25) \times 10^{-8}$	$2.5(8) \times 10^7$	2	$5.0(8) \times 10^3$; 50(8)
214.3	102(15)	E2	0.207	0.20(7)	288(95)	1	288(95)
124	9(5)	E2	1.377	0.27(17)	212(133)	0	-
35/2- [40	48 keV, $\tau = 175(4$	40) ns]					
412	63(21)	<i>M</i> 1	0.063	$4.2(17) \times 10^{-7}$	$4.2(17) \times 10^{6}$	7	9(1)
655	33(19)	E1	0.0033	$6.1(38) \times 10^{-10}$	$3.3(20) \times 10^9$	6	38(4); 8(1)
703.5	585(92)	E2	0.0075	$2.3(6) \times 10^{-2}$	$2.5(7) \times 10^3$	6	4(1)

TABLE VIII. Transition strengths $[B(\sigma L)]$, hindrances (F_W) , and reduced hindrances (f_v) for decays from isomers in ¹⁷³Tm.

^aB(EL) units are $(e^2 \text{ fm}^{2L})$ and B(ML) units are $(\mu_N^2 \text{ fm}^{2L-2})$.

^bValues in italics include an additional factor of 10^4 in the expected single-particle hindrance for E1 transitions (see text).

^cInferred from the intensity balance with the 171- [δ (171 keV) = 0.29(3)] and 322-keV γ rays, due to the difficulty of accurately measuring the intensity for the 43-keV line.

FIG. 18. Multiquasiparticle states in the N = 106 isotones. Configuration assignments (with abbreviated labels) in ¹⁷⁵Tm are given on the basis of the expected couplings to the unpaired proton of two-quasineutron states seen in the neighboring even-even isotones.

well as independent support for the rotational band placed on the (long-lived) 8^- isomer in 176 Yb.

The transition strengths and hindrances for the 947-keV isomer decays are given in Table VII. For decays from the $15/2^-$ isomer, the reduced hindrances are low, in particular the value of $f_{\nu} = 8(1)$ for the 301-keV *E*2 transition. These hindrances will be discussed below in terms of state mixing. The 5.2-keV *M*1 γ ray from the $15/2^-$ isomer is unobserved. Therefore, its intensity was inferred from the total intensity de-exciting the 942-keV level which it feeds, by assuming a pure *M*1 character. Since even a small *E*2/*M*1 mixing ratio would significantly increase the conversion coefficient for this 5.2-keV transition, the value of I_{γ} is an upper limit, and the corresponding reduced hindrance value a lower limit.

2. 23/2⁺ isomer at 1518 keV

The energy gap between the $15/2^-$, $17/2^-$ doublet and the $23/2^+$ isomer is of the order of 500 keV, comparable to the 440-keV energy gap between the $1/2^+$ ground state and the $7/2^-$ isomer. The implication of Fig. 18 is that the $K^{\pi} =$ $23/2^+ \rightarrow K^{\pi} = 17/2^-$ decays are the analog of the $7/2^-$ [523] $\rightarrow 1/2^+$ [411] ones, but with the single proton coupled to the $\nu 7/2^-$ [514]9/2+[624] neutron configuration.

Reduced hindrance values for the decays from the 1518-keV 23/2⁺ isomer are given in Table VII. The 513-keV *E*3 transition is an allowed one, but it has $F_W = 33(29)$. The reduced hindrance for the 108-keV *E*1 transition is within the usual $f_{\nu} \sim 30$ –200 range for *K*-forbidden transitions (after accounting for an *E*1 hindrance reduction factor of 10⁴). The 322-keV *M*2 transition has a large reduced hindrance of $f_{\nu} = 1.9(13) \times 10^3$. The hindrances for decays from the 23/2⁺ isomer seem to be consistent with the 7/2⁻[523] \rightarrow 1/2⁺[411] proton change (cf. the similar reduced hindrances for the *E*1 and *M*2 decays from the 7/2⁻[523] isomer). They, therefore, support a ν 7/2⁻[514]9/2⁺[624] $\otimes \pi$ 7/2⁻[523] configuration assignment for the 23/2⁺ isomer.

C. Three- and five-quasiparticle states in ¹⁷³Tm

The large number of high-*K* multiquasiparticle states observed between 1 and 2 MeV excitation energy in ¹⁷³Tm (see Fig. 10) can be attributed to the $5/2^-$, $7/2^-$, $7/2^+$, and $9/2^+$ neutron orbitals, all lying near the Fermi surface at N = 104.

FIG. 19. Multiquasiparticle states in the N = 104 isotones. Configuration assignments (with abbreviated labels) in ¹⁷³Tm are proposed on the basis of the expected couplings to the unpaired proton of two- and four-quasineutron states seen in the neighboring even-even isotones. The dotted line signifies a break in the energy scale to display the higher seniority isomers.

173₆₉Tm₁₀₄

¹⁷²68^{Er}104

The even-even neighbors of ¹⁷³Tm are ¹⁷²Er [3,40] and ¹⁷⁴Yb [5]. They contain $v5/2^{-}[512]\otimes 7/2^{-}[514]$, $K^{\pi} = 6^{+}$ isomers, at 1501 and 1518 keV, respectively. Both nuclei also exhibit $v7/2^{+}[633] \otimes 7/2^{-}[514]$, $K^{\pi} = 7^{-}$ isomers (1792 keV in ¹⁷²Er and 1765 keV in ¹⁷⁴Yb). The studies of ¹⁷⁴Yb also revealed a $v5/2^{-}[512]7/2^{+}[633]$ $7/2^{-}[514]9/2^{+}[624]$, $K^{\pi} = 14^{+}$ isomer at 3699 keV [5].

The intrinsic states observed in ¹⁷³Tm, including likely configuration assignments, are compared to the equivalent states in the neighboring isotones in Fig. 19.

1. $11/2^+$ and $13/2^+$ states at 1344 and 1443 keV

Figure 19 implies the presence of a low-lying $\nu 5/2^{-}[512]7/2^{-}[514] \otimes \pi 1/2^{+}[411]$ configuration in ¹⁷³Tm. It is likely that the $11/2^{+}$ 1344- and $13/2^{+}$ 1443-keV states are associated with the antiparallel $(-1/2^{+}[411])$ and parallel $(+1/2^{+}[411])$ proton couplings of this configuration, respectively. The $|g_K - g_R|$ value in Table VI for the $13/2^{+}$ band is consistent with such an assignment. The $7/2^{-}[514] \otimes 1/2^{+}[411]$ and $5/2^{-}[512] \otimes 1/2^{+}[411]$ residual interactions predict that the $11/2^{+}$ coupling is energetically favored by 116 keV over the $13/2^{+}$ coupling. This is in approximate agreement with the 99-keV difference observed experimentally. The alignment for the 1443-keV 13/2⁺ band, illustrated in Fig. 17, is surprisingly large, given the absence of either an $h_{11/2}$ proton or an $i_{13/2}$ neutron.

2. 13/2⁻, 15/2⁻, and 17/2⁻ states at 1540, 1692, and 1862 keV and the (15/2⁻) state at 1782 keV

The reduced hindrance values for the 43-keV *M*1 and 214-keV *E*2 branches from the 19/2⁻ isomer (Table VIII) are consistent with the 1692- and 1862-keV states being the $15/2^-$ and $17/2^-$ members of a band built on the $K^{\pi} = 13/2^-$ level at

1540 keV. Figure 19 would suggest a $\nu 7/2^+$ [633]7/2⁻[514] $\otimes \pi - 1/2^+$ [411] configuration assignment for the 13/2⁻ state. However, Table VI indicates that the $|g_K - g_R|$ value deduced from the 171/322-keV branching ratio is inconsistent with the prediction for this configuration.

One possible explanation is that the $15/2^{-}$ 1692-keV level is in fact not a band member but corresponds instead to the $\nu 7/2^{+}$ [633]7/2⁻[514] $\otimes \pi + 1/2^{+}$ [411] coupling from the same configuration. This would explain the disagreement of the $|g_K - g_R|$ value, as well as the observation of strongly competing, *K*-forbidden, interband transitions from the 1692keV level to the 7/2⁻[523] band. However, by assuming that the 17/2⁻ state is then in a band built on a 15/2⁻ intrinsic state at 1692 keV, the 43-keV transition from the 1906-keV isomer would have a very large reduced hindrance of $f_{\nu} = 8.8(33) \times 10^3$.

A $13/2^{-}$ state can also be constructed from the $v5/2^{-}[512]9/2^{+}[624] \otimes \pi - 1/2^{+}[411]$ configuration. This gives a predicted $(g_K - g_R) = -0.48(9)$, in much better agreement with experiment. However, the multiquasiparticle calculation (Sec. VI) predicts that this state should lie more than 200 keV higher than the favored configuration assignment. Given the predicted close proximity of these two states, it is possible that the $13/2^{-}$ level at 1540 keV represents a mixture of the two configurations.

The alignments in Fig. 17 indicate that the $13/2^{-1540}$ -keV state has a reasonably large rotational alignment. This is consistent with the presence of an $i_{13/2}$ neutron in its configuration.

The $(15/2^-)$ state at 1782 keV may have an alternative energy placement of 1664 keV (if the order of the 124and 242-keV transitions is reversed). It is a candidate for the $\nu 7/2^+$ [633]7/2⁻[514] $\otimes \pi + 1/2^+$ [411] configuration, as implied by Fig. 19.

3. 19/2⁻ isomer at 1906 keV

A $19/2^{-}$ state is expected to be formed from the $\nu 5/2^{-}[512]7/2^{-}[514]$ configuration (see Fig. 19) coupled to the $7/2^{-}[523]$ proton excitation. The 1906-keV $19/2^{-}$ isomer lies at the expected energy, and reasonable agreement is seen between the experimental $|g_K - g_R|$ value and that predicted for this configuration in Table VI.

The rotational alignment of the $19/2^{-}$ band is plotted in Fig. 17. The nearby dotted line shows the expected alignment for this configuration as obtained from the sum of the $7/2^{-}[523]$ alignment and that of the $v5/2^{-}[512]7/2^{-}[514]$, 6^{+} band in 174 Yb [5] (with a reference appropriate for the 174 Yb ground-state band). The excellent agreement between the two curves gives additional confidence in this configuration assignment and suggests that, in this case, the neutron and proton components of the rotational alignments are approximately additive, provided that appropriate references are chosen in each case. The sudden increase in alignment at the top of the observed $19/2^{-}$ band is probably an indication of the beginning of a backbend [41] and will be discussed below.

Table VIII presents hindrances for decay branches from the 1906-keV isomer. Reasonable reduced hindrances are seen for the 43-, 154-, and 214-keV branches with the present spin

and parity assignments. The $f_{\nu} = 50(8)$ value for the 154-keV transition is in contrast to the large reduced hindrances of the 193- and 199-keV *E*1 transitions from the 7/2⁻ isomer at 318 keV, which should represent the one-quasiparticle analog of the 154-keV transition. For the decay to the 1782-keV (or 1664-keV) level, the transition can have an energy of either 124 or 242 keV and can be of *M*1 or *E*2 multipolarity so that there are four possible hindrance values. Of the four possibilities, a 124-keV *E*2 transition appears to be the most reasonable (with the alternative assignments implying allowed transitions with hindrance values $F_W \ge 3.7 \times 10^3$). However, the 15/2⁻ spin-parity and 1782-keV energy assignments for this state remain tentative.

4. 21/2⁺ state at 2061 keV

The experimental $|g_K - g_R|$ value for the $21/2^+$ band is in good agreement with that expected for the $\nu 7/2^+[633]7/2^-[514] \otimes \pi 7/2^-[523]$ configuration (Table VI). However, it is also consistent with the $|g_K - g_R|$ value for the $\nu 9/2^+[624]5/2^-[512] \otimes \pi 7/2^-[523]$ configuration, which could also be low lying.

Since both configurations contain an $h_{11/2}$ proton and an $i_{13/2}$ neutron, both are consistent with the large alignment observed in Fig. 17. The dotted line which closely follows the $21/2^+$ alignment is a sum of the $7/2^-[523]$ alignment with that of the $\nu 7/2^+[633]7/2^-[514]$, 7^- band in 174 Yb [5] (with a reference appropriate for the 174 Yb ground-state band). The agreement is consistent with an assignment to the $\nu 7/2^+[633]7/2^-[514] \otimes \pi 7/2^-[523]$ configuration.

5. 35/2⁻ isomer at 4048 keV

The absence of a rotational band associated with this state precludes a $g_K - g_R$ measurement so that no firm configuration assignment can be proposed on this basis. Nevertheless, comparison with the 14⁺ isomer in ¹⁷⁴Yb (Fig. 19), but with the addition of a 7/2⁻[523] proton, gives the expectation of a 35/2⁻ state at approximately 4017 keV (by neglecting residual interactions and taking $E_x(7/2^-[523]) = 318$ keV). A $v7/2^+[633]7/2^-[514]9/2^+[624]5/2^-[512] \otimes \pi 7/2^-[523]$ configuration assignment, therefore, seems very likely for the 35/2⁻ 4048-keV isomer.

The reduced hindrance values for all three branches from the $35/2^-$ isomer (Table VIII) are low and will be discussed below.

VI. MULTIQUASIPARTICLE CALCULATIONS

The multiquasiparticle calculations employed here have been described in connection with several investigations in this mass region (see Refs. [2,5,7,31], for example). They use single-particle energies from a Nilsson calculation and the Lipkin-Nogami formalism (plus pair blocking) for calculating pairing correlations. The calculations were performed systematically for the thulium isotopes between A = 171 and A = 175, although the present paper will focus on ¹⁷³Tm and ¹⁷⁵Tm only.

The Nilsson calculation parameters were adopted from Ref. [42] while deformation parameters for thulium isotopes

from A = 171-175 were taken from Ref. [43]. Single-particle Nilsson orbitals were generated for the N = 4, 5, and 6 proton and neutron oscillator shells (a total of 128 states). For simplicity, a fixed, configuration-independent deformation is used for all Nilsson orbitals. (Configuration-dependent deformations calculated for single-proton states by Nazarewicz *et al.* [44] suggest only small differences in deformation between, for example, the $1/2^+$ [411] and $7/2^-$ [523] orbitals within a given nucleus.)

After calculation with the initial set of Nilsson energies, the neutron and proton orbitals near the Fermi surface were adjusted to ensure that the multiquasiparticle calculation approximately reproduced the experimental one-quasiparticle energies for protons in the odd-*A* thulium isotopes and in the odd-*A* erbium and ytterbium isotopes for neutrons.

Pairing strength parameters of $G_{\nu} = 18.0/A \text{ MeV}$ and $G_{\pi} = 20.8/A \text{ MeV}$ were used for neutrons and protons, respectively. These were chosen to approximately reproduce the odd-even mass differences in the neutron and proton pairing gaps and to be consistent with previous calculations for tantalum, lutetium, and ytterbium nuclei in this region [2,5,7,31].

The multiquasiparticle energies obtained by combining the calculated multiquasiproton and multiquasineutron components are subsequently corrected for the residual nucleonnucleon interactions. These are taken from the present work (where applicable), from Ref. [10], and from Kondev [45]. For multiquasiparticle states, a sum of the individual twoquasiparticle residual interactions was used following the generalized form given by Jain *et al.* [46]. Strictly speaking, each multiquasiparticle configuration should also be corrected for perturbations from rotational and Coriolis shifts, but these are usually relatively minor and have been neglected here [45].

The energies of the calculated multiquasiparticle configurations and experimental states are compared in Table IX and Table X, as well as in Fig. 20, for ¹⁷³Tm and ¹⁷⁵Tm, respectively, Only those states calculated within reasonable proximity to the nominal yrast line are included.

A. Comparison between experimental and calculated states

The predicted one-quasiproton energies in the odd-A nuclei do not provide a true test of the calculations since they have been adjusted to match experiment in cases where they are known. The predictions for higher seniority configurations provide a better test, and the agreement here is usually within 150 keV of experiment.

1. ¹⁷³Tm

The $11/2^+$ and $13/2^+$ states observed at 1344 and 1443 keV, respectively, are proposed to represent the $\nu 5/2^-[512]7/2^-[514] \otimes \pm \pi 1/2^+[411]$ configurations. They are reproduced well at 1352 and 1472 keV, respectively.

A prediction of 1655 keV for the $13/2^-$ coupling of the $\nu 7/2^+$ [633]7/2⁻[514] $\otimes -\pi 1/2^+$ [411] configuration approximately agrees with the $13/2^-$ state observed at 1540 keV.

The $15/2^-$ coupling of the $\nu 7/2^+[633]7/2^-[514] \otimes +\pi 1/2^+[411]$ configuration is predicted by the residual

FIG. 20. Experimental and calculated single- and multiquasiparticle-state energies for ¹⁷³Tm and ¹⁷⁵Tm. The smaller filled, joined symbols represent the $\alpha = -1/2$ signature of the $1/2^+$ [411] ground-state band.

interactions to be 30 keV higher lying than the $13/2^-$ coupling. Possible candidates for the parallel coupling are the $(15/2^-)$ state at 1664/1782 keV or the $15/2^-$ state at 1692 keV (the latter being, however, more likely to be the $15/2^-$ member of the $K^{\pi} = 13/2^-$ rotational band).

The $v5/2^{-}[512]7/2^{-}[514] \otimes \pi 7/2^{-}[523]$ configuration is predicted 223 keV lower than the 19/2⁻ isomer at 1906 keV. No alternative 19/2⁻ configurations are predicted, and this assignment seems likely.

The 2106-keV $21/2^+$ isomer has possible assignments as the $\nu 7/2^+[633]7/2^-[514] \otimes \pi 7/2^-[523]$ or $\nu 5/2^-[512]$ $9/2^+[624] \otimes \pi 7/2^-[523]$ configuration. The former is predicted at 1990 keV, which is within 100 keV of the experimental state and over 200 keV lower than the alternative configuration. The $\nu 5/2^-[512]7/2^+[633]7/2^-[514]9/2^+[624] \otimes \pi 7/2^-[523]$ configuration is predicted within 121 keV of the $35/2^-$ isomer at 4048 keV, in excellent agreement. No other states with comparable *K* values are expected to occur this low in excitation energy.

2. ¹⁷⁵Tm

The agreement between experiment and calculation for ¹⁷⁵Tm is satisfactory. The $15/2^-$ and $17/2^-$ couplings of the $\nu 7/2^-[514]9/2^+[624] \otimes \pm \pi 1/2^+[411]$ configuration are both well reproduced, falling within 30 keV of experiment. The nearest alternative states with J = 15/2 or 17/2 are predicted more than 700 keV higher in energy. The $23/2^+$ isomer resulting from the $\nu 7/2^-[514]9/2^+[624] \otimes \pi 7/2^-[523]$ configuration is calculated to lie at 1367 keV, 151 keV lower than the experimental value of 1518 keV. No other $J^{\pi} = 21/2^+$ or $23/2^+$ states are expected below 2 MeV in excitation. Predicted

K^{π}	Configura	tion ^a	$E_{ m qp}$	$E_{\rm res}$	$E_{\rm calc}$	E_{exp}
	ν	π	(keV)	(keV)	(keV)	(keV)
$1/2^{+}$		1/2+	0	0	0	0
$3/2^{+}$		3/2+	640	0	640	
$7/2^{-}$		7/2-	320	0	320	318
$7/2^+$		7/2+	822	0	822	
9/2-		9/2-	1213	0	1213	1213
$11/2^+$	$5/2^{-}, 7/2^{-}$	1/2+	1540	-188	1352	1344
$13/2^{+}$	$5/2^{-}, 7/2^{-}$	$1/2^+$	1540	-72	1472	1443
$13/2^{-}$	7/2+,7/2-	$1/2^+$	1763	-108	1655	1540
$13/2^{-}$	$5/2^{-}, 9/2^{+}$	$1/2^+$	1893	-10	1883	
$15/2^{-}$	7/2+,7/2-	1/2+	1763	-78	1685	(1782)
$15/2^{-}$	$5/2^{-}, 9/2^{+}$	$1/2^+$	1893	+378	2271	. ,
$15/2^{-}$		$1/2^+, 7/2^-, 7/2^+$	2256	-65	2191	
$15/2^+$	$7/2^+, 9/2^+$	$1/2^{+}$	2101	+51	2152	
$17/2^{+}$	$7/2^+, 9/2^+$	1/2+	2101	+349	2450	
$17/2^{-}$	$7/2^{-}, 9/2^{+}$	1/2+	2262	-69	2193	
$19/2^{-}$	$5/2^{-}, 7/2^{-}$	7/2-	1860	-177	1683	1906
$19/2^{+}$	5/2-,7/2-	7/2+	2362	-200	2162	
$21/2^+$	7/2+,7/2-	7/2-	2083	-93	1990	2061
$21/2^+$	$5/2^{-}, 9/2^{+}$	7/2-	2213	+19	2232	
$21/2^{-}$	$7/2^+, 7/2^-$	7/2+	2585	-158	2428	
$21/2^{-}$	5/2-,7/2-	9/2-	2752	-162	2590	
$23/2^{-}$	$7/2^+, 9/2^+$	7/2-	2421	+85	2506	
$23/2^+$	$7/2^{-}, 9/2^{+}$	7/2-	2582	-122	2460	
$23/2^{-}$	$7/2^{-}, 9/2^{+}$	7/2+	3084	-156	2928	
$25/2^+$	$7/2^{-}, 9/2^{+}$	9/2-	3474	-114	3360	
$25/2^{-}$	$7/2^+, 9/2^+$	9/2-	3313	+58	3371	
$27/2^+$	$5/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	$1/2^+$	3509	+54	3563	
$27/2^{-}$	5/2-,7/2-	$1/2^+, 7/2^-, 7/2^+$	3796	-61	3735	
$29/2^+$	$5/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	$1/2^{+}$	3509	+472	3981	
$29/2^+$	7/2+,7/2-	$1/2^+, 7/2^+, 7/2^-$	4019	+189	4208	
$31/2^{-}$	$7/2^+, 9/2^+$	$1/2^+, 7/2^-, 7/2^+$	4357	+286	4643	
$31/2^{-}$	7/2+,7/2-	$1/2^+, 7/2^-, 9/2^-$	4399	-7	4392	
$33/2^+$	$7/2^+, 9/2^+$	$1/2^+, 7/2^-, 9/2^-$	4737	+182	4918	
35/2-	$5/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	7/2-	3829	+98	3927	4048
$35/2^+$	5/2-, 7/2+, 7/2-, 9/2+	7/2+	4331	+319	4650	
$37/2^{-}$	5/2-, 7/2+, 7/2-, 9/2+	9/2-	4722	+87	4809	
$39/2^+$	7/2+, 9/2+	$7/2^+, 7/2^-, 9/2^-$	5860	-68	5793	
$43/2^{-}$	$5/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	$1/2^+, 7/2^-, 7/2^+$	5765	+295	6060	

TABLE IX. Calculated multiquasiparticle states compared to experiment for ¹⁷³Tm.

^aConfigurations: (ν) 1/2⁻: 1/2⁻[521], 7/2⁻: 7/2⁻[514], 7/2⁺: 7/2⁺[633], 5/2⁻: 5/2⁻[512], 9/2⁺: 9/2⁺[624], 3/2⁻: 3/2⁻[512]. (π) 1/2⁺: 1/2⁺[411], 7/2⁻: 7/2⁻[523], 3/2⁺: 3/2⁺[411], 7/2⁺: 7/2⁺[404], 9/2⁻: 9/2⁻[514].

low-lying five-quasiparticle states include a 31/2⁺ state calculated to lie at 3211 keV, from the $\nu 7/2^{-}[514]9/2^{+}[624] \otimes \pi 1/2^{+}[411]7/2^{-}[523]7/2^{+}[404]$ configuration, although the unknown energy of the $\pi 7/2^{+}[404]$ orbital makes this prediction rather unreliable.

nuclei ¹⁷⁴Yb [5] and ¹⁷⁶Lu [7] are reproduced to within about 200 keV in similar calculations.

VII. DISCUSSION

A. Anomalous decays from the $35/2^-$ isomer in 173 Tm

The agreement between experimental and calculated states for both ¹⁷³Tm and ¹⁷⁵Tm is typically within 150 keV, and it is no worse than 250 keV for any given state. This is comparable to similar multiquasiparticle studies in this region. For example, experimentally observed states in the nearby

3. General agreement

In ¹⁷³Tm, the 35/2⁻ isomer decays via 412-keV *M*1 and 704-keV *E*2 transitions to the $19/2^-$ band and via a 655-keV *E*1 transition to the $21/2^+$ band. The 412-, 704-, and 655-keV transitions have reduced hindrance values of $f_{\nu} = 9(4), 4(1), \text{ and } 8(1),$ respectively. These are all unusually small.

Κπ	Configuration ^a		E _{qp}	$E_{\rm res}$	$E_{\rm calc}$	E_{exp}
	ν	π	(keV)	(keV)	(keV)	(keV)
$1/2^{+}$		$1/2^{+}$	0	0	0	0
$7/2^{-}$		7/2-	438	0	438	440
$3/2^{+}$		3/2+	624	0	624	611
$7/2^+$		7/2+	869	0	869	
$9/2^{-}$		9/2-	1157	0	1157	1175
$9/2^{+}$	$1/2^{-}, 7/2^{-}$	$1/2^+$	1548	-193	1361	
$11/2^{-}$	$1/2^{-}, 9/2^{+}$	$1/2^+$	1670	+285	1955	
$11/2^+$	3/2-, 7/2-	$1/2^+$	1729	+33	1762	
$11/2^+$	$5/2^{-}, 7/2^{-}$	$1/2^+$	2062	-188	1874	
$11/2^{+}$	$1/2^{-}, 7/2^{-}$	3/2+	2172	-173	1999	
$13/2^{-}$	$3/2^{-}, 9/2^{+}$	$1/2^+$	1851	-176	1676	
$13/2^{+}$	5/2-, 7/2-	$1/2^+$	2062	-68	1994	
$13/2^{-}$	$1/2^{-}, 9/2^{+}$	3/2+	2294	+11	2305	
$15/2^{-}$	$7/2^{-}, 9/2^{+}$	$1/2^+$	1048	-117	931	947
$15/2^{-}$	$5/2^{-}, 9/2^{+}$	$1/2^+$	1967	+370	2337	
$15/2^{-}$	$1/2^{-}, 7/2^{-}$	7/2-	1986	-281	1705	
$15/2^+$	$1/2^{-}, 7/2^{-}$	7/2+	2417	-265	2152	
$17/2^{-}$	$7/2^{-}, 9/2^{+}$	$1/2^+$	1048	-69	979	1005
$17/2^{+}$	$1/2^{-}, 9/2^{+}$	7/2-	2108	-56	2052	
$19/2^{-}$	$7/2^{-}, 9/2^{+}$	3/2+	1672	-108	1565	
$19/2^{+}$	$3/2^{-}, 9/2^{+}$	7/2-	2289	-142	2147	
$21/2^+$	$5/2^{-}, 9/2^{+}$	7/2-	2405	+19	2424	
$\frac{23}{2^+}$	$7/2^{-}, 9/2^{+}$	7/2-	1486	-119	1367	1518
$\frac{23}{2^{-}}$	$7/2^{-}, 9/2^{+}$	7/2+	1917	-156	1761	
$25/2^+$	$7/2^{-}, 9/2^{+}$	9/2-	2205	-114	2091	
$25/2^{-}$	$3/2^{-}, 5/2^{-}, 7/2^{-}, 9/2^{+}$	$1/2^+$	3302	-144	3158	
$27/2^+$	$3/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	$1/2^+$	3579	-164	3415	
$27/2^{-}$	$7/2^{-}, 9/2^{+}$	$1/2^+, 3/2^+, 7/2^+$	3621	-190	3431	
$27/2^{-}$	$3/2^{-}, 5/2^{-}, 7/2^{-}, 9/2^{+}$	3/2+	3926	-213	3713	
$\frac{29}{2^+}$	$1/2^{-}, 5/2^{-}, 7/2^{-}, 9/2^{+}$	7/2-	3572	-181	3391	
$29/2^{-}$	$1/2^{-}, 5/2^{-}, 7/2^{-}, 9/2^{+}$	7/2+	4003	+119	4122	
$31/2^+$	$7/2^{-}, 9/2^{+}$	$1/2^+, 7/2^-, 7/2^+$	3435	-224	3211	
$31/2^+$	$3/2^{-}, 5/2^{-}, 7/2^{-}, 9/2^{+}$	7/2-	3739	-229	3510	
$31/2^{-}$	$1/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	7/2-	3849	-16	3833	
$31/2^{-}$	$3/2^{-}, 5/2^{-}, 7/2^{-}, 9/2^{+}$	7/2+	4170	-246	3924	
$33/2^{-}$	$7/2^{-}, 9/2^{+}$	$1/2^+, 7/2^-, 9/2^-$	3714	-17	3697	
$\frac{33}{2^{-}}$	$3/2^{-}, 7/2^{+}, 7/2^{-}, 9/2^{+}$	7/2-	4017	-154	3863	
$33/2^+$	$7/2^{-}, 9/2^{+}$	3/2+, 7/2-, 7/2+	4095	-366	3729	
39/2-	$7/2^{-}, 9/2^{+}$	7/2-, 7/2+, 9/2-	4847	-341	4506	

TABLE X. Calculated multiquasiparticle states compared to experiment for ¹⁷⁵Tm.

^aConfigurations: (ν) 1/2⁻: 1/2⁻[510], 7/2⁻: 7/2⁻[514], 7/2⁺: 7/2⁺[633], 5/2⁻: 5/2⁻[512], 9/2⁺: 9/2⁺[624], 3/2⁻: 3/2⁻[512]. (π) 1/2⁺: 1/2⁺[411], 7/2⁻: 7/2⁻[523], 3/2⁺: 3/2⁺[411], 7/2⁺: 7/2⁺[404], 9/2⁻: 9/2⁻[514].

As was shown in Fig. 19, the $35/2^{-}$, $19/2^{-}$, and $21/2^{+}$ states in ¹⁷³Tm are the analogs of the $K^{\pi} = 14^{+}$, 6^{+} , and 7^{-} states in the even-even isotone ¹⁷⁴Yb, obtained by adding the $7/2^{-}$ [523] proton component to the ¹⁷⁴Yb core. The 14⁺ isomer in ¹⁷⁴Yb also exhibits decay branches with small hindrance values to the 6^{+} and 7^{-} bands. Dracoulis *et al.* [5] ascribe these low hindrances to Coriolis mixing from the $i_{13/2}$ neutrons contained within the configuration of the 14⁺ isomer and probable chance mixing with nearby 14⁺ levels at this energy (seated over 1 MeV above the yrast line).

The Coriolis mixing discussed in the ¹⁷⁴Yb case would presumably also contribute to the low reduced hindrances of transitions from the $35/2^-$ isomer in ¹⁷³Tm, especially since the additional $h_{11/2}$ proton will also be Coriolis mixed. For ¹⁷³Tm, the $35/2^-$ isomer is ~600 keV above the yrast line, so the surrounding level density should be somewhat lower than that surrounding the 14⁺ isomer in ¹⁷⁴Yb, and fewer $35/2^-$ states will be available for state mixing as a result.

An analogous, $K^{\pi} = 22^{-}$ six-quasiparticle isomer was recently observed in ¹⁷⁶Hf by Mukherjee *et al.* [47]. Its

configuration contains the same four quasineutrons as the 14^+ (¹⁷⁴Yb) and $35/2^-$ (¹⁷³Tm) levels, and it shows a relatively enhanced K-forbidden E2 decay to a $K^{\pi} = 14^{-1}$ band. Mukherjee et al. also propose possible statistical and Coriolis mixing to account for the enhancement, but they also suggest local mixing of either the 22⁻ isomer with the (unobserved, $\Delta E \sim 723$ keV) 22⁻ member of the 14⁻ band or mixing of the 20⁻ final state with a nearby ($\Delta E = 60 \text{ keV}$) 20^{-} level. While the latter is a special case, the former can be compared with chance mixing of the $35/2^-$ isomer and the (unobserved) $35/2^-$ member of the $K^{\pi} = 19/2^-$ band in ¹⁷³Tm. An energy separation of 111 keV between the two $35/2^{-}$ levels can be estimated from an extrapolation of the $19/2^{-1}$ rotational band. A mixing amplitude of $\beta = 1.6 \times 10^{-3}$ and an interaction strength of V = 0.17 keV are deduced in a manner similar to that used in Refs. [6,48]. This mixing amplitude would imply that a contribution of $\beta^2 = 2.56 \times$ 10^{-6} of the $K^{\pi} = 19/2^{-}$ component to the $K^{\pi} = 35/2^{-}$ wave function is sufficient to explain the observed strength of the 412- and 704-keV transitions to the $K^{\pi} = 19/2^{-1}$ band. However, such mixing should also enhance the 655-keV E1 transition since the $19/2^-$ admixture in the $35/2^-$ state wave function would give an allowed component for the E1transition to the $21/2^+$ band. The transition strength for an allowed E1 transition between these two configurations is already known in this case, since the 155-keV $21/2^+ \rightarrow 19/2^$ decay corresponds to the reverse transition, with a measured B(E1) value of $6.9^{+4.1}_{-1.8} \times 10^{-6} e^2$ fm². Taking the same B(E1)value for the 655-keV transition, but with an amplitude of $\beta^2 = 2.56 \times 10^{-6}$, gives $B(E1) = 1.8^{+1.1}_{-0.5} \times 10^{-11} e^2 \text{ fm}^2$. This value is smaller than the experimentally measured transition strength of $B(E1) = 6.1(38) \times 10^{-10} e^2 \text{ fm}^2$ for the 655-keV transition, suggesting that, on its own, such mixing cannot fully account for the enhancement of this transition from the $35/2^{-1}$ isomer.

It is interesting to note the similarity in the configurations of the $19/2^-$ and $35/2^-$ states, the latter having the $7/2^+[633]$ and $9/2^+[624]$ neutrons coupled to the $19/2^-$ configuration. These two $i_{13/2}$ neutrons are also partially aligned to the rotation axis, making this isomer the bandhead of a socalled Fermi-aligned or t band [49,50]. (In such a band, the single-particle angular momentum, *j*, precesses around an axis intermediate between the symmetry and rotation axes.)

The sudden increase in alignment observed at $\hbar \omega \sim 0.22$ MeV for the $19/2^-$ band in Fig. 17 suggests the beginnings of a backbend [41]. This is attributed to the introduction of rotational alignment from a pair of high-*j* nucleons (in this case, two $i_{13/2}$ neutrons), coupled so that $K \approx 0$. The consequent rotation-aligned sequence of states [in this case, a three-quasiparticle state coupled to the $(i_{13/2})^2$ neutrons] is then called the s band.

The 412- and 704-keV transitions are, therefore, likely to be decays between the bandhead of the $K^{\pi} = 35/2^{-1}$ t band and the $K^{\pi} = 19/2^{-1}$ s band. The two configurations contain the same five quasiparticles, but, in the case of the $35/2^{-1}$ isomer, the two $i_{13/2}$ neutrons are coupled parallel, and in the $19/2^{-1}$ s band, they are coupled antiparallel.

B. The competition between *K*-forbidden *E*1 transitions and collective *E*2 and *M*1 transitions in ¹⁷³Tm

The $K^{\pi} = 13/2^+$ state at 1433 keV is proposed to be composed of the $v5/2^-[512]7/2^-[514] \otimes \pi + 1/2^+[411]$ configuration. It has rotational members at 1586 keV and 1751 keV, both of which show v = 2, *E*1 branches to the $7/2^-[523]$ rotational band.

Only lifetime limits of $\tau < 5$ ns were obtained for each level; however, transition strengths can be deduced indirectly for the K-forbidden decay branches by scaling the observed γ -ray branches to the partial γ -ray widths of the in-band E2 or *M*1 transitions (calculated by assuming the rotational model). For the 309-keV E2 decay from the 1751-keV level, a γ -ray width of $4.2(3) \times 10^{-6}$ eV was deduced. This leads to implied widths of $1.9(8) \times 10^{-6}$ and $6.5(22) \times 10^{-6}$ eV for the 757and 933-keV transitions, respectively. These widths correspond to strengths of $2.1(8) \times 10^{-6}$ and $3.8(13) \times 10^{-6}$ W.u. for the two transitions. For the 1586-keV level, the 143 keV (M1 + E2) transition is used to deduce the widths (since with the present assignments no collective E2 transition de-excites this level). A partial γ -ray width of 5.6(13) $\times 10^{-6}$ eV for the 143-keV γ ray leads to implied strengths of 7.7(29) $\times 10^{-7}$ and $1.5(5) \times 10^{-6}$ W.u. for the 768- and 923-keV transitions, respectively. It should be noted that the above calculations are sensitive to the assumed $K^{\pi} = 13/2^+$ assignment for the 1433-keV level.

The transition strengths deduced above (of about 10^{-6} W.u.) imply relatively strong transitions once the *K*-forbiddenness is taken into account. In the rare-earth region, *E*1 transitions with strengths around 10^{-4} – 10^{-5} W.u. are expected between certain one-quasiparticle states [51–53] and can be attributed to an enhanced dipole moment due to an octupole softness [54]. However, octupole enhancement is difficult to reconcile with the fairly complex three-quasiparticle to one-quasiparticle configuration changes exhibited in the present case, and the relative enhancement of these *E*1 transitions therefore remains unexplained.

C. Mixing of $15/2^{-}$ states in 175 Tm

The $15/2^-$ isomer at 947 keV has three decay branches to the $7/2^-$ band (see Fig. 2) that exhibit small reduced hindrances. The 5-keV *M*1 branch has $f_{\nu} > 14$, the 164-keV *M*1 decay has $f_{\nu} = 28(1)$, while the 301-keV *E*2 branch has $f_{\nu} = 8(1)$.

The γ -ray intensity branching ratio of 0.45(4) for the 301/164-keV transitions agrees within error with a value of 0.47(13) for the 296/159-keV in-band transitions from the 15/2⁻ band member at 942 keV. The similarity is a signature [6] that the isomer contains a small amplitude of the lower *K* band that results in a collective component in the otherwise forbidden transitions resulting in the observed low hindrances.

By using a method similar to Refs. [6,48], a mixing amplitude between the two $15/2^-$ states of $\beta = 0.010$ can be deduced from the 301-keV *E*2 isomer branch. This mixing amplitude, along with the measured energy spacing of $\Delta E_{exp} = 5.2$ keV, implies an interaction strength of only V = 53 eV. This is a small interaction in comparison to normal nuclear matrix elements, which are typically on the order of tens of keV [56]. However, it is comparable to interaction strengths associated with other cases of chance mixing between high- and low-*K* states, as discussed by Dracoulis *et al.* [6]. A 0.01% component of the $K^{\pi} = 7/2^{-}$ band in the $K^{\pi} = 15/2^{-}$ wave function is, therefore, sufficient to allow this isomer to decay with the low reduced hindrances observed in the data.

The inferred 5.2-keV transition between the two $15/2^{-}$ states is presumably only allowed, due to the collective component described above. It represents an unusual in-band decay that connects two states with the same *J* and can only occur because of the state mixing. The situation is displayed (for a general case) in Fig. 21.

The in-band B(M1) value for bands with $K \neq 0$, 1/2 can be written in terms of the rotational *g* factor, g_R , and the intrinsic *g* factor, g_K , as [57]

$$B(M1; J_1, K \to J_2, K) = \frac{3}{4\pi} \mu_N^2 [(g_K - g_R) K \langle J_1 K 10 | J_2 K \rangle + g_R [J_1 (J_1 + 1)]^{1/2} \delta(J_1, J_2)]^2, \qquad (4)$$

where $\mu_N = \frac{e\hbar}{2M_{\pi}}$ is the nuclear magneton. The last term is only relevant when $J_1 = J_2$, and it is, therefore, unphysical in normal circumstances, since two states with the same spin cannot occur in a band.

The *M*1 transition matrix element between two states with spin *J* and nominal (mixed) *K* values, \tilde{K}_1 and \tilde{K}_2 (see Fig. 21), is given by

$$\langle J, \tilde{K}_2 | T(M1) | J, \tilde{K}_1 \rangle = \langle \beta \langle J, K_1 | + \alpha \langle J, K_2 | | T(M1) | \alpha | J, K_1 \rangle - \beta | J, K_2 \rangle ,$$
 (5)

where α and β are the wave-function amplitudes. Neglecting the cross-terms between K_1 and K_2 (i.e., the noncollective components), and rewriting for the present ¹⁷⁵Tm case in terms of the experimental B(M1) value, one finds

$$B(M1; J, \tilde{K}_{15/2} \to J, \tilde{K}_{7/2}) = \frac{\alpha^2 \beta^2}{(2J+1)} [\langle J, K_{15/2} | T(M1) | J, K_{15/2} \rangle - \langle J, K_{7/2} | T(M1) | J, K_{7/2} \rangle]^2.$$
(6)

This expression does not look like that for a normal in-band M1 transition, but instead it takes the form of a difference in

FIG. 21. Mixing of a high-K bandhead with a rotational state of the same spin in a lower K band. The mixed wave functions are shown.

the static moments of the two states. By substituting Eq. (4) for both right-hand terms in Eq. (6), the transition strength for the 5.2-keV transition measured experimentally can be compared with that predicted from the mixing. For simplicity, the same g_R value is assumed for both the K = 7/2 and K = 15/2 states. The predicted $g_K - g_R = -0.19(8)$ is assumed for the $K^{\pi} = 15/2^-$ band (whose rotational band is unobserved) along with $g_K - g_R = +0.88(9)$ (from Table VI) for the $K^{\pi} = 7/2^-$ band. The amplitude $\beta = 0.010$ was deduced earlier, and $\alpha = \sqrt{1 - \beta^2}$.

The calculation results in the prediction $B(M1) = 1.8(9) \times 10^{-4} \mu_N^2$ for the 5.2-keV transition, which is consistent with the measured limit of $B(M1) \le 6.2 \times 10^{-4} \mu_N^2$. It should be noted, however, that the measured B(M1) limit is very sensitive to the mixing ratio used in deducing the limit on the 5.2-keV γ -ray intensity.

VIII. SUMMARY

In summary, extensive results on the high-spin structure of odd-A, neutron-rich ¹⁷³Tm and ¹⁷⁵Tm nuclei have been obtained.

In ¹⁷³Tm, the new states include a three-quasiparticle, $K^{\pi} = 19/2^{-}$ isomer with a lifetime of $\tau = 360(100)$ ns at 1906 keV. The level is associated with the $\nu 5/2^{-}[512]7/2^{-}[514] \otimes \pi 7/2^{-}[523]$ configuration. A five-quasiparticle, $K^{\pi} = 35/2^{-}$ isomer with a lifetime of $\tau = 175(40)$ ns has also been observed at 4048 keV. The $35/2^{-}$ isomer is proposed to be a t bandhead comprised of the $\nu 7/2^{+}[633]7/2^{-}[514]9/2^{+}[624]5/2^{-}[512] \otimes \pi 7/2^{-}[523]$ configuration. It is characterized by anomalously fast decays, possibly due to Coriolis mixing within the configuration and to state mixing with nearby levels.

In ¹⁷⁵Tm, a candidate for the $9/2^{-}[514]$ orbital has been identified at 1175 keV. High-*K* structures in ¹⁷⁵Tm include a $K^{\pi} = 15/2^{-}$ isomer with a lifetime of $\tau = 64(3)$ ns at 947 keV. The isomer has been assigned to the $\nu 7/2^{-}[514]9/2^{+}[624] \otimes \pi - 1/2^{+}[411]$ configuration. It shows relatively enhanced decays that can be explained by chance mixing with the $15/2^{-}$ member of the $7/2^{-}[523]$ band at 942 keV with a mixing matrix element of only 53 eV. Another isomer with $K^{\pi} = 23/2^{+}$ and a lifetime of $\tau = 30(20) \ \mu$ s was observed at 1518 keV. It is proposed to be associated with the $\nu 7/2^{-}[514]9/2^{+}[624] \otimes \pi 7/2^{-}[523]$ configuration.

Multiquasiparticle calculations were performed for both nuclei, the results of which compare well with the experimentally observed high-spin states. The observed multiquasiparticle structure of both ¹⁷³Tm and ¹⁷⁵Tm can be understood in terms of the single unpaired proton occupying either the $1/2^+$ [411] or $7/2^-$ [523] Nilsson states with coupling to high-seniority neutron configurations that are observed in the even-even isotones.

Unresolved experimental issues remain nevertheless. In particular, the rotational bands associated with the $35/2^-$ isomer in 173 Tm and the $23/2^+$ isomer in 175 Tm need to be identified to confirm that the magnetic properties are consistent with the present configuration assignments for the respective states.

ACKNOWLEDGMENTS

We are indebted to R. B. Turkentine and J. P. Greene for producing the targets. This work was supported by the ANSTO program for Access to Major Research Facilities,

- [1] G. J. Lane *et al.*, Phys. Rev. C 82, 051304(R) (2010).
- [2] F. G. Kondev, G. D. Dracoulis, A. P. Byrne, T. Kibédi, and S. Bayer, Nucl. Phys. A 617, 91 (1997).
- [3] G. D. Dracoulis et al., Phys. Lett. B 635, 200 (2006).
- [4] G. D. Dracoulis *et al.*, Phys. Rev. C **79**, 061303(R) (2009).
- [5] G. D. Dracoulis et al., Phys. Rev. C 71, 044326 (2005).
- [6] G. D. Dracoulis et al., Phys. Rev. Lett. 97, 122501 (2006).
- [7] T. R. McGoram, G. D. Dracoulis, T. Kibédi, A. P. Byrne, R. A. Bark, A. M. Baxter, and S. M. Mullins, Phys. Rev. C 62, 031303(R) (2000).
- [8] P. M. Walker et al., Phys. Rev. C 79, 044321 (2009).
- [9] G. D. Dracoulis et al., Phys. Rev. C 82, 034317 (2010).
- [10] R. O. Hughes, G. J. Lane, G. D. Dracoulis, T. Kibédi, P. Nieminen, and H. Watanabe, Phys. Rev. C 77, 044309 (2008).
- [11] C. Wheldon et al., Phys. Lett. B 425, 239 (1998).
- [12] M. Cromaz, T. J. M. Symons, G. J. Lane, I. Y. Lee, and R. W. Macleod, Nucl. Instrum. Methods Phys. Res. A 462, 519 (2001).
- [13] D. C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995).
- [14] R. Brun and F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997).
- [15] T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, and C. W. Nestor, Jr., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008).
- [16] R. Broda, M. A. Quader, P. J. Daly, R. V. F. Janssens, T. L. Khoo, W. C. Ma, and M. W. Drigert, Phys. Lett. B 251, 245 (1990).
- [17] R. Broda, J. Phys. G 32, R151 (2006).
- [18] G. Løvhøiden, P. H. Andersen, D. G. Burke, E. R. Flynn, and J. W. Sunier, Nucl. Phys. A 327, 64 (1979).
- [19] S. Drissi, A. Bruder, J. Kern, and J. P. Vorlet, Nucl. Phys. A 483, 153 (1988).
- [20] X. Zhang, S. Yuan, W. Yang, Z. Li, W. Mou, X. Yu, and J. Zhong, Z. Phys. A 353, 353 (1996).
- [21] M. S. Basunia, Nucl. Data Sheets 102, 719 (2004).
- [22] V. Pursiheimo, T. Tuurnala, and T. Raunemaa, Z. Phys. **252**, 283 (1972).
- [23] R. W. Tarara, J. D. Zumbro, and C. P. Browne, Phys. Rev. C 18, 1064 (1978).
- [24] S. J. Asztalos et al., Phys. Rev. C 60, 044307 (1999).
- [25] N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
- [26] M. L. Bissell *et al.*, Phys. Lett. B **645**, 330 (2007).
- [27] V. S. Shirley, Nucl. Data Sheets 75, 377 (1995).
- [28] J. Kern and G. L. Struble, Nucl. Phys. A 286, 371 (1977).

Grant No. 02/03-H-05, the Australian Research Council Discovery Projects No. DP0343027 and No. DP0345844, and the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848.

- [29] P. Taras, D. Ward, H. R. Andrews, J. S. Geiger, R. L. Graham, and W. McLatchie, Nucl. Phys. A 289, 165 (1977).
- [30] E. N. Kaufmann, J. D. Bowman, and S. K. Bhattacherjee, Nucl. Phys. A 119, 417 (1968).
- [31] F. G. Kondev, G. D. Dracoulis, A. P. Byrne, and T. Kibédi, Nucl. Phys. A 632, 473 (1998).
- [32] A. E. Stuchbery, Nucl. Phys. A 589, 222 (1995).
- [33] K. E. G. Löbner, Phys. Lett. B 26, 369 (1968).
- [34] L. I. Rusinov, Usp. Fiz. Nauk 73, 615 (1961).
- [35] K. E. G. Löbner, *The Electromagnetic Interaction in Nuclear Spectroscopy*, edited by W. D. Hamilton (North Holland, Amsterdam, 1975), p. 141.
- [36] J. Kantele, Phys. Lett. 2, 293 (1962).
- [37] L. Kristensen, M. Jorgensen, O. B. Nielsen, and G. Sidenius, Phys. Lett. 8, 57 (1964).
- [38] G. D. Dracoulis et al. (private communication).
- [39] N. J. Ncapayi et al., Eur. Phys. J. A 26, 265 (2005).
- [40] G. D. Dracoulis et al., Phys. Rev. C 81, 054313 (2010).
- [41] F. S. Stephens, Rev. Mod. Phys. 47, 43 (1975).
- [42] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).
- [43] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
- [44] W. Nazarewicz, M. A. Riley, and J. D. Garrett, Nucl. Phys. A 512, 61 (1990).
- [45] F. G. Kondev, Ph.D. thesis, Australian National University, 1996 (unpublished).
- [46] K. Jain, O. Burglin, G. D. Dracoulis, B. Fabricius, N. Rowley, and P. M. Walker, Nucl. Phys. A 591, 61 (1995).
- [47] G. Mukherjee et al., Phys. Rev. C 82, 054316 (2010).
- [48] T. R. Saitoh, N. Saitoh-Hashimoto, G. Sletten, R. A. Bark, G. B. Hagemann, and B. Herskind, Phys. Scr., T 88, 67 (2000).
- [49] P. M. Walker, G. D. Dracoulis, A. P. Byrne, B. Fabricius, T. Kibédi, and A. E. Stuchbery, Phys. Rev. Lett. 67, 433 (1991).
- [50] P. M. Walker et al., Nucl. Phys. A 568, 397 (1994).
- [51] F. M. Bernthal and J. O. Rasmussen, Nucl. Phys. A 101, 513 (1967).
- [52] S. Ogaza et al., Nucl. Phys. A 559, 100 (1993).
- [53] G. B. Hagemann, I. Hamamoto, W. Satuła, Phys. Rev. C 47, 2008 (1993).
- [54] W. Donner and W. Greiner, Z. Phys. A 197, 440 (1966).
- [55] F. P. Cranston, Jr., M. E. Bunker, and J. W. Starner, Phys. Rev. 110, 1427 (1958).
- [56] G. B. Hagemann et al., Nucl. Phys. A 618, 199 (1997).
- [57] A. Bohr and B. R. Mottelson, *Nuclear Structure*, Vol. II (Benjamin, New York, 1975).