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Abstract. Deep-Inelastic reactions have been used to populate high-spin states in the even-
even osmium isotopes and in the iridium neighbors. New isomers have been identified in 1°°Os,
19205, 1940g, 911 and !'%3Ir. These include a 2 ns 121 state at 2865 keV and a 295 ns,
20% state at 4580 keV in '920s. Although a number of multi-quasiparticle states arising from
prolate and triaxial deformations are expected in these nuclei, the main structures in °20Os can
be interpreted as a two-stage alignment of 7,3/, neutrons at oblate deformation, in close analogy
with similar structures in the isotones °*Pt and '°°Hg. The isomers are attributed to low-energy
E2 transitions at the point of the alignment gains. The isomer observed in *'Ir is long-lived (7.,
~ 8 5) and probably arises from coupling of the hi; /2 proton to the 10~ v9/27[505]11/27 [615]
prolate configuration that gives rise to long-lived isomers in '°°Os and *°?Os, although potential-
energy-surface calculations indicate that the resultant three-quasiparticle state will be triaxial.

1. Introduction

The nuclear structure of the even-even isotopes of osmium, #60s, ¥80s, 1°°0s and 920s is of
considerable interest since they fall in the transitional region where static and dynamic effects due
to the triaxial degree of freedom are expected to be important. Their description is challenging
for theoretical models. The seminal Coulomb excitation studies of Wu et al. [1, 2] that exploited
model-independent sum rules, concluded that the stable osmium nuclei are indeed v-soft, but
prolate deformed. While '%°0Os and '920s, for example, have average asymmetry angles close to
20° and 24° respectively, these are well localized.

Despite the interest, the proximity of nuclei in this region to the stability line has meant
that high-spin spectroscopic information has been limited. However, with the development of
deep-inelastic and fragmentation reactions for spectroscopic studies, both stable and neutron-
rich isotopes are becoming accessible. For example, results on the ground state bands for ¥0s
and '%°0s have been reported [3], as well as for the neutron-rich isotope **Os [4] and some
yrast states in 1%¥0s have been identified with fragmentation [5].
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Recent theoretical studies include extensive mean field calculations that describe ground- and
excited-state shape evolution [6, 7, 8, 9, 10] across the range of neutron-rich Hf, W, Os and Pt
nuclei. In a more specific prediction, Walker and Xu [11] have proposed that a rotation-aligned
oblate structure would compete with the (largely) prolate structures in the isotones 1YW and
19205 since the Fermi surface is close to the low-{ orbitals within the 45 /2 neutron shell at
oblate deformation (thus maximising Coriolis effects), but near the top of the shell at prolate
deformation. Both limits could give low-lying 127 states, that could also be isomers.

Isomers occur for several reasons, such as when low energy and/or high multipolarities are
involved [12]. So-called K-isomers arise when the ~-ray multipolarity A fails to match the
difference in K between the initial and final states, (where K is the projection of the total
angular momentum on the nuclear deformation axis) the shortfall v = AK -\ being termed the
forbiddenness. The resultant hindrance (F') is given by the ratio of the partial y-ray lifetime
compared to the Weiskopff estimate, so that F' = 7, /7. In well-deformed nuclei, the hindrance

is found to scale so that the reduced hindrance f, = F v is approximately a constant of magnitude
~ 100. Experimental reduced hindrances f, can be taken as indicators of the “goodness” of K
although it should be remembered that rotational effects will broaden the K distributions in a
well-defined (calculable) fashion, random state mixing may be present ( see [13] for examples of
both), and fluctuations in shape could undermine the purity of K since the projection axis is no
longer fixed.

As should be clear from the above, the presence or absence of isomers, or whether their
lifetimes are long or short, is not necessarily evidence of dilution of the K-quantum number.
The qualitative expectation that K-isomerism will diminish as the perimeter of the well-deformed
region is crossed, needs to be quantified in terms of transition strengths. In ®°Os and '920s,
for example, despite their y-softness, isomers with very long lifetimes are known and attributed
to the K™ = 10~ v11/27[615],9/27 [505] (prolate-deformed) configuration. The long lifetimes
(14 min. in '%°0s and 9 s in 1920s) arise because of the low-energy, high-multipolarity decays
(M2 and E3) and also because of K-hindrance, even though the reduced hindrances are all
anomalously low (< 10).

2. Experimental Details
The present measurements to study nuclei in this region used 6.0 MeV per nucleon 3%Xe beams
provided by the ATLAS facility at Argonne National Laboratory. Nanosecond pulses, separated
by 825 ns, were incident on enriched '8¢W and '920s targets. Gamma-rays were detected with
Gammasphere, with 100 detectors in operation. Triple coincidences were required and the main
data analysis was carried out with y-y-y cubes with various time-difference conditions, and also
with time constraints relative to the pulsed beam to select different out-of-beam regimes.

Another set of measurements was carried out using a macroscopically chopped beam with
various (beam on)/(beam off) conditions. In these, out-of-beam dual coincidence events were
recorded in reference to a precision clock and -y matrices as a function of the time were
constructed in contiguous time regions, allowing long lifetimes to be isolated by gating on
cascades of interest. Scans were made with different conditions, progressing in steps of ten,
from initial values in the sub-millisecond region up the region of a few seconds.

The results on a range of even-even osmium and odd-A iridium isotopes will be reported in
due course, the main focus here being on preliminary results for '9'Ir and 920s. Results for the
neutron-rich isotopes '8W and W from the same measurements were published recently [14].

3. Iridium isotopes and 'Ir

The lightest odd-A iridium isotope identified was '87Ir, corresponding to the removal of five
neutrons from the '20s target, and the heaviest was '%°Ir, from the addition of three neutrons.
The main new results are for '9'Ir and *3Ir. In '"Ir, feeding from a long-lived, but unidentified
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isomer, into states in the rotational band based on the hj;/, proton (the 11/27[505] Nilsson
orbital) had been reported in early studies using the 920s(d,3n)!!Ir reaction [15]. The hj; /2
band is also known in *3Ir [16], but no isomers had been reported. We have also obtained
coincidence information on delayed transitions in °°Ir, previously identified from fragmentation
studies [17]. A large number of other transitions depopulating isomers in iridium nuclei, most
probably in the odd-odd isotopes, have been identified, but as yet not assigned to specific nuclei,
largely because of the absence of information on low-lying high-spin bands in those nuclei.
Selected spectra obtained with double gates on delayed transitions in 'Ir are given in Fig. 1.
The lower panel (figure 1(b)) shows the delayed transitions feeding into the 19/27 state of the
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Figure 1. Out-of-beam 7-ray spectra in '9'Ir with double +-ray coincidence gates as indicated.
Known contaminants are indicated by the symbol (® ).

11/27 band, the main path being through the cascade of 524-keV and 395-keV transitions
directly above. This was the path identified previously, with a delayed component attributed
to an unobserved transition from a long-lived isomer with E* < 2123-keV and T}, = 5.5(7) s,
(corresponding to a meanlife of 7.9(10) s), feeding a state at 2047 keV.
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The partial level scheme deduced from the present work is given in Fig. 2, with spins and
parities based on a consideration of total conversion coefficients deduced from delayed intensity
balances and -+ angular correlations. The 395 keV transition is a mixed dipole, and probably
therefore of E2/M1 character. This leads to a J™ = 25/27 assignment for the 2047 keV state.
Although it could be a candidate for the 25/27 member of the unfavoured sequence of the
11/27[505] band, we do not observe the expected E2 branch to the 21/27 member. As well,
the angular correlation obtained by gating on stretched quadrupoles lower in the scheme is of
opposite sign to those of the 472-keV and 446-keV transitions (see Fig. 2). While the mixing
ratio is not consistent with the 395-keV transition being a band member, there is an alignment
in this region, and therefore a change in structure that needs to be considered.

Our results confirm the main transitions, but an additional delayed path is evident from the
coincidence spectra given in figure 1. The cascade of 308.5, 146.6 and 518.7 keV transitions feeds
the 19/27, 1128 keV level, implying a state at 2101.4 keV, 54 keV above the 2047.4-keV, 25/2~
state. Our contention is that the 2101.4 keV state is the isomer, with an unobserved 54-keV
transition to the 2047.4 keV state. This is consistent with the observation in the earlier work
of prompt feeding to the 2047 keV state [15], and the fact that we observe the same lifetime for
both paths, evidence for which is shown in figure 3.

The 308.5 keV M3 transition strength is 1.52(15)x10~3 W.u., while the implied 54 keV E3
branch has a strength of 1.62(14)x10~2 W.u., both reasonable values, although a full evaluation
would need characterisation of the final state configurations. The present calculations of the
expected intrinsic states that allow for shape variations with configuration constraints [18, 19],
predict a 31/2% state from the v11/27[615],9/27[505]®@711/2~ [505] configuration at 2210 keV,
close to the observed energy of the isomer. Unlike the core, 10~ two-neutron component
however, the equilibrium deformation has a y-asymmetry of about 27°. In fact, the calculations
predict a number of other intrinsic states in this energy region including a 31/2 state from the
v11/27[615],9/21[624]@n11/27[505] configuration (calculated to lie at at 2086 keV).

4. The Nuclide ?Os

The main delayed transitions in '®?Os are apparent in the spectrum in figure 4 obtained by
summing selected double gates on the yrast transitions that are not fed by the long-lived 10~
isomer. A partial level scheme is given in figure 5. Transitions above the 295 ns isomer placed
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Figure 4. y-ray spectrum produced by summing double y-ray coincidence gates in '920s in the
100-700 ns out-of-beam time region.

at 4580 keV with an 85-keV decay, preceding the 382, 568, 681-keV cascade, were identified
using time-correlated gates on the lower transitions. Other key features of the scheme include
the 2 ns, 127 state at 2865 keV which has several decay paths, including E2 transitions to two
107" states, but a dominant decay via an F1 transition of 498 keV to the 11~ state of the 10~
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band. This, and other branches, have allowed the identification of the band based on the 10~
isomer, normally inaccessible because of its very long lifetime.
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Figure 5. Partial level scheme for 1920s.

The net alignments of the band structures are illustrated in figure 6(a). For the discussion,
these have been evaluated using a reference which is appropriate for an oblate deformation.
Because of this, the low-frequency trajectories of the ground-band, «v-band and K = 4 band,
while essentially the same, have an artificial upward slope. The 10~ band shows about 3h
more alignment, consistent with the presence of the 11/27[615], i13/2 neutron orbital in its
configuration and there are two sharp increments, beginning near the 127 and 20" states,
corresponding to alignment gains of ~12A and ~8h respectively. The main sequence is compared
with that of the isotones %Pt and %Hg [21]. Most of the yrast sequence for Pt proposed
by Jones et al. [20] and interpreted as being of oblate collectivity, has been confirmed in the
present measurements, but some modifications were necessary and are reflected in figure 6(b).

The comparison between these cases seems compelling: Very similar alignment gains are
observed, consistent with the AB and CD alignments expected for the i;3/5 neutron shell
when the Fermi level is close to the low-{) orbitals, as is the case for oblate deformation.
This is the accepted interpretation for '%Hg [21]. The first alignment is just that predicted
for the 1920s case in Ref. [11]. Similar 12* isomers occur in both 4Pt and '*SHg, with
comparable transition strengths. In the present case, the 111.5 keV FE2 transition from
the 12F state to the 10] state, presumably the lower-spin member of the s-band, has a
strength of 9.7(26) W.u., while the competing 445.7 keV E2 to ground state band is much
weaker, at 4.4(9)x1072 W.u.. The 207 —18", 85.3 keV transition is 0.99(4) W.u.. Two
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of these can be seen as essentially collective transitions, modified by the change in intrinsic
structure caused by the alignment gain. Although various intrinsic states are predicted by the
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Figure 6. (a) Net alignments for bands in ?Os. (b) comparison of net alignment curves for
the isotones °20s, 1Pt and "Hg, with a common reference.

calculations in the same energy region, including a prolate four-quasineutron 20 level from the
11/2%[615],13/27[606],7/27 [503],9/2~ [505] configuration, the current conclusion would be that
the observed 207, 295 ns and 12%, 2 ns isomers in *?Os are products of alignment gains within
the set of ij3/9 neutron orbitals at oblate deformation.
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