75 research outputs found

    Empirical Determination of Bang-Bang Operations

    Full text link
    Strong and fast "bang-bang" (BB) pulses have been recently proposed as a means for reducing decoherence in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we introduce a method for empirically determining the set of required BB pulses, that relies on quantum process tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand, without having to assume a model Hamiltonian.Comment: 14 pages, 2 eps figures, ReVTeX4 two-colum

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Universal control of quantum subspaces and subsystems

    Full text link
    We describe a broad dynamical-algebraic framework for analyzing the quantum control properties of a set of naturally available interactions. General conditions under which universal control is achieved over a set of subspaces/subsystems are found. All known physical examples of universal control on subspaces/systems are related to the framework developed here.Comment: 4 Pages RevTeX, Some typos fixed, references adde

    Universal quantum control in irreducible state-space sectors: application to bosonic and spin-boson systems

    Full text link
    We analyze the dynamical-algebraic approach to universal quantum control introduced in P. Zanardi, S. Lloyd, quant-ph/0305013. The quantum state-space H\cal H encoding information decomposes into irreducible sectors and subsystems associated to the group of available evolutions. If this group coincides with the unitary part of the group-algebra \CC{\cal K} of some group K\cal K then universal control is achievable over the K{\cal K}-irreducible components of H\cal H. This general strategy is applied to different kind of bosonic systems. We first consider massive bosons in a double-well and show how to achieve universal control over all finite-dimensional Fock sectors. We then discuss a multi-mode massless case giving the conditions for generating the whole infinite-dimensional multi-mode Heisenberg-Weyl enveloping-algebra. Finally we show how to use an auxiliary bosonic mode coupled to finite-dimensional systems to generate high-order non-linearities needed for universal control.Comment: 10 pages, LaTeX, no figure

    Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise

    Get PDF
    The application of dynamical decoupling pulses to a single qubit interacting with a linear harmonic oscillator bath with 1/f1/f spectral density is studied, and compared to the Ohmic case. Decoupling pulses that are slower than the fastest bath time-scale are shown to drastically reduce the decoherence rate in the 1/f1/f case. Contrary to conclusions drawn from previous studies, this shows that dynamical decoupling pulses do not always have to be ultra-fast. Our results explain a recent experiment in which dephasing due to 1/f1/f charge noise affecting a charge qubit in a small superconducting electrode was successfully suppressed using spin-echo-type gate-voltage pulses.Comment: 5 pages, 3 figures. v2: Many changes and update

    Near-IR Atlas of S0-Sa galaxies (NIRS0S)

    Get PDF
    An atlas of Ks-band images of 206 early-type galaxies is presented, including 160 S0-S0/a galaxies, 12 ellipticals, and 33 Sa galaxies. A majority of the Atlas galaxies belong to a magnitude-limited (mB<12.5 mag) sample of 185 NIRS0S (Near-IR S0 galaxy Survey) galaxies. To assure that mis-classified S0s are not omitted, 25 ellipticals from RC3 classified as S0s in the Carnegie Atlas were included in the sample. The images are 2-3 mag deeper than 2MASS images. Both visual and photometric classifications are made. Special attention is paid to the classification of lenses, coded in a systematic manner. A new lens-type, called a 'barlens', is introduced. Also, boxy/peanut/x-shaped structures are identified in many barred galaxies, even-though the galaxies are not seen in edge-on view, indicating that vertical thickening is not enough to explain them. Multiple lenses appear in 25% of the Atlas galaxies, which is a challenge to the hierarchical evolutionary picture of galaxies. Such models need to explain how the lenses were formed and survived in multiple merger events that galaxies may have suffered during their lifetimes. Following the early suggestion by van den Bergh, candidates of S0c galaxies are shown, which galaxies are expected to be former Sc-type spirals stripped out of gas.Comment: 67 pages (include 16 figures and 6 tables). Accepted to MNRAS 2011 June 1

    Quantum Computing in the Presence of Detected Spontaneous Emission

    Full text link
    A new method for quantum computation in the presence of detected spontaneous emission is proposed. The method combines strong and fast (dynamical decoupling) pulses and a quantum error correcting code that encodes nn logical qubits into only n+1n+1 physical qubits. Universal fault-tolerant quantum computation is shown to be possible in this scheme using Hamiltonians relevant to a range of promising proposals for the physical implementation of quantum computers.Comment: 7 pages, no figures. This version corrects an error in the description of spontaneous emission in the quantum jumps picture. As a consequence the error correcting code and some aspects of the preparation, computation, and recovery operations have been modified. The main conclusions of the published paper remain intact. An erratum will be published shortly in Phys. Rev. A, detailing all the corrections required in the published paper. The present version includes all these corrections in the body of the pape

    Quantitative Treatment of Decoherence

    Full text link
    We outline different approaches to define and quantify decoherence. We argue that a measure based on a properly defined norm of deviation of the density matrix is appropriate for quantifying decoherence in quantum registers. For a semiconductor double quantum dot qubit, evaluation of this measure is reviewed. For a general class of decoherence processes, including those occurring in semiconductor qubits, we argue that this measure is additive: It scales linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure

    The Life and Death of Barn Beetles: Faunas from Manure and Stored Hay inside Farm Buildings in Northern Iceland

    Get PDF
    This research was funded by the Commonwealth Scholarship Commission and received support from the Research Budget of the Department of Archaeology at the University of Aberdeen. This project was undertaken as part of doctoral studies supervised by Dr Karen Milek, to whom V.F. is especially grateful for her support and advice. Thomas Birch, Sigrún Inga Garðarsdóttir, and Paul Ledger provided invaluable assistance during fieldwork. V.F. would like to dedicate this paper to Tom and Sía, who met during this fieldwork and are getting married this year. Many people from Fornleifastofnun Íslands – Garðar Guðmundsson, Ólöf Þorsteinsdóttir, Þóra Pétursdóttir, Adolf Friðriksson and Uggi Ævarsson – as well as Unnstein Ingason, Ágústa Edwald, and Mark Young, helped with fieldwork logistics. Special thanks are due to all the Icelandic farmers and their families who kindly allowed us to collect insects on their farms and provided help when needed: Hermann Aðalsteinsson, Hermína Fjóla Ingólfsdóttir, Guðmundur Skúlason, Sigrún Á. Franzdóttir, Dúna Magnúsdóttir, Sverrir Steinbergsson, Valgeir Þorvaldsson, Reynir Sveinsson, Jónas Þór Ingólfsson, and Ívar Ólafsson. Eva Panagiotakopulu, Jan Klimaszewski, Ales Smetana, Georges Pelletier, Gabor Pozsgai, and Jenni Stockham helped with some of the beetle identifications. A.J.D. acknowledges the support of National Science Foundation through ARC 1202692. Consultation of the BugsCEP database (Buckland & Buckland, 2006) aided the redaction of this paper. The authors would like to thank David Smith and two anonymous reviewers for insightful comments that helped improve the quality of this paper.Peer reviewedPostprin

    Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma.

    Get PDF
    Sentinel-lymph-node biopsy is associated with increased melanoma-specific survival (i.e., survival until death from melanoma) among patients with node-positive intermediate-thickness melanomas (1.2 to 3.5 mm). The value of completion lymph-node dissection for patients with sentinel-node metastases is not clear. In an international trial, we randomly assigned patients with sentinel-node metastases detected by means of standard pathological assessment or a multimarker molecular assay to immediate completion lymph-node dissection (dissection group) or nodal observation with ultrasonography (observation group). The primary end point was melanoma-specific survival. Secondary end points included disease-free survival and the cumulative rate of nonsentinel-node metastasis. Immediate completion lymph-node dissection was not associated with increased melanoma-specific survival among 1934 patients with data that could be evaluated in an intention-to-treat analysis or among 1755 patients in the per-protocol analysis. In the per-protocol analysis, the mean (±SE) 3-year rate of melanoma-specific survival was similar in the dissection group and the observation group (86±1.3% and 86±1.2%, respectively; P=0.42 by the log-rank test) at a median follow-up of 43 months. The rate of disease-free survival was slightly higher in the dissection group than in the observation group (68±1.7% and 63±1.7%, respectively; P=0.05 by the log-rank test) at 3 years, based on an increased rate of disease control in the regional nodes at 3 years (92±1.0% vs. 77±1.5%; P&lt;0.001 by the log-rank test); these results must be interpreted with caution. Nonsentinel-node metastases, identified in 11.5% of the patients in the dissection group, were a strong, independent prognostic factor for recurrence (hazard ratio, 1.78; P=0.005). Lymphedema was observed in 24.1% of the patients in the dissection group and in 6.3% of those in the observation group. Immediate completion lymph-node dissection increased the rate of regional disease control and provided prognostic information but did not increase melanoma-specific survival among patients with melanoma and sentinel-node metastases. (Funded by the National Cancer Institute and others; MSLT-II ClinicalTrials.gov number, NCT00297895 .)
    corecore