5,275 research outputs found
Elastomeric silazane polymers and process for preparing the same Patent
Preparation of elastomeric diamine silazane polymer
Substituted silane-diol polymers have improved thermal stability
Organosilicon polymers were synthesized to produce improved physical and chemical properties, including high thermal stability. Of the polymers produced, poly/4, 4 prime-bisoxybi- phenylene/diphenylsilane, formed from bis/anilino/diphenylsilane and p, p prime-biphenol, was found to have the most desirable properties
Utilizing the history of accounting to improve communication skills
During recent years, many comments have been made regarding the lack of good written and oral communication skills of entry level accountants. Accounting academicians realize that there is a weakness in the communications area. Many professors do not feel, however, that they have sufficient time to address the area of communication skills in the present undergraduate accounting courses because it is difficult just having time to cover technical accounting material. To increase accounting knowledge and at the same time improve communications skills were the objectives of an intersession course for accounting students which was offered between semesters as a one hour elective. The course met 3 hours a day for 5 days and was aimed at accounting juniors and seniors
Implications of Qudit Superselection rules for the Theory of Decoherence-free Subsystems
The use of d-state systems, or qudits, in quantum information processing is
discussed. Three-state and higher dimensional quantum systems are known to have
very different properties from two-state systems, i.e., qubits. In particular
there exist qudit states which are not equivalent under local unitary
transformations unless a selection rule is violated. This observation is shown
to be an important factor in the theory of decoherence-free, or noiseless,
subsystems. Experimentally observable consequences and methods for
distinguishing these states are also provided, including the explicit
construction of new decoherence-free or noiseless subsystems from qutrits.
Implications for simulating quantum systems with quantum systems are also
discussed.Comment: 13 pages, 1 figures, Version 2: Typos corrected, references fixed and
new ones added, also includes referees suggested changes and a new exampl
Bistability in sine-Gordon: the ideal switch
The sine-Gordon equation, used as the representative nonlinear wave equation,
presents a bistable behavior resulting from nonlinearity and generating
hysteresis properties. We show that the process can be understood in a
comprehensive analytical formulation and that it is a generic property of
nonlinear systems possessing a natural band gap. The approach allows to
discover that sine-Gordon can work as an it ideal switch by reaching a
transmissive regime with vanishing driving amplitude.Comment: Phys. Rev. E, (to be published, May 2005
Universal Leakage Elimination
``Leakage'' errors are particularly serious errors which couple states within
a code subspace to states outside of that subspace thus destroying the error
protection benefit afforded by an encoded state. We generalize an earlier
method for producing leakage elimination decoupling operations and examine the
effects of the leakage eliminating operations on decoherence-free or noiseless
subsystems which encode one logical, or protected qubit into three or four
qubits. We find that by eliminating the large class of leakage errors, under
some circumstances, we can create the conditions for a decoherence free
evolution. In other cases we identify a combination decoherence-free and
quantum error correcting code which could eliminate errors in solid-state
qubits with anisotropic exchange interaction Hamiltonians and enable universal
quantum computing with only these interactions.Comment: 14 pages, no figures, new version has references updated/fixe
Perfect Function Transfer in two- and three- dimensions without initialization
We find analytic models that can perfectly transfer, without state
initializati$ or remote collaboration, arbitrary functions in two- and
three-dimensional interacting bosonic and fermionic networks. We elaborate on a
possible implementation of state transfer through bosonic or fermionic atoms
trapped in optical lattices. A significant finding is that the state of a spin
qubit can be perfectly transferred through a fermionic system. Families of
Hamiltonians, both linear and nonlinear, are described which are related to the
linear Boson model and that enable the perfect transfer of arbitrary functions.
This includes entangled states such as decoherence-free subsystems enabling
noise protection of the transferred state.Comment: 4 pages, no figur
- …