2,336 research outputs found

    Giant Magnetoresistance Oscillations Induced by Microwave Radiation and a Zero-Resistance State in a 2D Electron System with a Moderate Mobility

    Full text link
    The effect of a microwave field in the frequency range from 54 to 140 GHz\mathrm{GHz} on the magnetotransport in a GaAs quantum well with AlAs/GaAs superlattice barriers and with an electron mobility no higher than 10610^6 cm2/Vs\mathrm{cm^2/Vs} is investigated. In the given two-dimensional system under the effect of microwave radiation, giant resistance oscillations are observed with their positions in magnetic field being determined by the ratio of the radiation frequency to the cyclotron frequency. Earlier, such oscillations had only been observed in GaAs/AlGaAs heterostructures with much higher mobilities. When the samples under study are irradiated with a 140-GHz\mathrm{GHz} microwave field, the resistance corresponding to the main oscillation minimum, which occurs near the cyclotron resonance, appears to be close to zero. The results of the study suggest that a mobility value lower than 10610^6 cm2/Vs\mathrm{cm^2/Vs} does not prevent the formation of zero-resistance states in magnetic field in a two-dimensional system under the effect of microwave radiation.Comment: 4 pages, 2 figur

    Anisotropic positive magnetoresistance of a nonplanar 2D electron gas in a parallel magnetic field

    Full text link
    We study the transport properties of a 2D electron gas in narrow GaAs quantum wells with AlAs/GaAs superlattice barriers. It is shown that the anisotropic positive magnetoresistance observed in selectively doped semiconductor structures in a parallel magnetic field is caused by the spatial modulation of the 2D electron gas.Comment: 4 pages, 3 figure

    Directed electron transport through ballistic quantum dot under microwave radiation

    Full text link
    Rectification of microwave radiation by asymmetric, ballistic quantum dot is observed. The directed transport is studied at different frequency (1-40 GHz) temperatures (0.3K-6K)and magnetic field. Dramatic reduction of the rectification is found in magnetic fields at which the cyclotron (Larmor) radius of the electron orbits at Fermi level is smaller than the size of the quantum dot. It strongly suggests the ballistic nature of the observed nonlinear phenomena. Both symmetric and anti-symmetric with respect to the magnetic field contributions to the directed transport are presented. We have found that the behavior of the symmetric part of the rectified voltage with the magnetic field is different significantly for microwaves with different frequencies. A ballistic model of the directed transport is proposed.Comment: 5 pages, 3 figure

    Nonequilibrium stationary states with ratchet effect

    Full text link
    An ensemble of particles in thermal equilibrium at temperature TT, modeled by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk elastic scatterers. Despite the scatterer asymmetry a directed transport is clearly ruled out by the second law of thermodynamics. Introduction of a polarized zero mean monochromatic field creates a directed stationary flow with nontrivial dependence on temperature and field parameters. We give a theoretical estimate of directed current induced by a microwave field in an antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added

    Semiclassical theory of a quantum pump

    Full text link
    In a quantum charge pump, the periodic variation of two parameters that affect the phase of the electronic wavefunction causes the flow of a direct current. The operating mechanism of a quantum pump is based on quantum interference, the phases of interfering amplitudes being modulated by the external parameters. In a ballistic quantum dot, there is a minimum time before which quantum interference can not occur: the Ehrenfest time. Here we calculate the current pumped through a ballistic quantum dot when the Ehrenfest time is comparable to the mean dwell time. Remarkably, we find that the pumped current has a component that is not suppressed if the Ehrenfest time is much larger than the mean dwell time.Comment: 14 pages, 8 figures. Revised version, minor change
    corecore