106 research outputs found

    A Cosmic Ray Resolution to the Superbubble Energy-Crisis

    Full text link
    Superbubbles (SBs) are amongst the greatest injectors of energy into the Galaxy, and have been proposed to be the acceleration site of Galactic cosmic rays. They are thought to be powered by the fast stellar winds and powerful supernova explosions of massive stars in dense stellar clusters and associations. Observations of the SB 'DEM L192' in the neighboring Large Magellenic Cloud (LMC) galaxy show that it contains only about one-third the energy injected by its constituent stars via fast stellar winds and supernovae. It is not yet understood where the excess energy is going, thus, the so-called 'energy crisis'. We show here that it is very likely that a significant fraction of the unaccounted for energy is being taken up in accelerating cosmic rays, thus bolstering the argument for the SB origin of cosmic rays.Comment: Accepted for publication in ApJ

    Monopole harmonics on CPn1\mathbb{CP}^{n-1}

    Full text link
    We find the spectra and eigenfunctions of both ordinary and supersymmetric quantum-mechanical models describing the motion of a charged particle over the CPn1\mathbb{CP}^{n-1} manifold in the presence of a background monopole-like gauge field. The states form degenerate SU(n)SU(n) multiplets and their wave functions acquire a very simple form being expressed via homogeneous coordinates. Their relationship to multidimensional orthogonal polynomials of a special kind is discussed. By the well-known isomorphism between the twisted Dolbeault and Dirac complexes, our construction also gives the eigenfunctions and eigenvalues of the Dirac operator on complex projective spaces in a monopole background.Comment: 42 pages, 3 figures, v2: minor corrections, references adde

    Electron and Ion Acceleration in Relativistic Shocks with Applications to GRB Afterglows

    Get PDF
    We have modeled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parameterizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at nonthermal thermal energies to above PeV energies, including the nonlinear smoothing of the shock structure due to cosmic-ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parameterize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse-Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of gamma-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the nonlinear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these nonlinear effects should be qualitatively similar as long as the scattering mean free path is an increasing function of momentum.Comment: Accepted for publication in MNRA

    Nonthermal particles and photons in starburst regions and superbubbles

    Get PDF
    Starforming factories in galaxies produce compact clusters and loose associations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observational data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in starburst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic "PeVatrons” are reviewed in the global galactic ecology context

    Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks

    Full text link
    We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA) and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.Comment: 3 figures, 5 pages. Accepted for publication in ApJ
    corecore