14 research outputs found

    Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting

    No full text
    Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies. © The Royal Society of Chemistry 2017192

    Flattening bent Janus nanodiscs expands lattice parameters

    No full text
    Nanoscale lattice parameter engineering is a potentially powerful tool for tailoring the electronic properties of nanomaterials. The nascent strain in juxtaposed hetero-interfaces of nanocrystals was recently shown to substantially affect the energy states of the exposed surfaces and improve catalytic activity; however, practical implementations of this design strategy are rare. Herein, we report that Rh3S4 and Cu31S16 can be combined to produce a bent Janus-type nanodisc in which the surface strain can be controlled precisely by modulating the curvature. These nanodiscs are conveniently prepared by replacing copper with rhodium in Cu31S16 via anisotropic cation exchange, which induces lattice strain and bends the nanodiscs. Flattening the Rh3S4/Cu31S16 nanodisc leads to a unique surface lattice structure and affords superior electrocatalytic performance in the hydrogen evolution reaction. We demonstrate a general and straightforward strategy for controlling the lattice strains in hetero-nanostructures and for systematically improving their catalytic performance.ª2022ElsevierInc.11Nsciescopu

    Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions

    No full text
    While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications

    Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction

    No full text
    The rational design of highly efficient electrocatalysts for the hydrogen evolution reaction ( HER) is of prime importance for establishing renewable and sustainable energy systems. The alkaline HER is particularly challenging as it involves a two-step reaction of water dissociation and hydrogen recombination, for which platinum-based binary catalysts have shown promising activity. In this work, we synthesized high performance platinum-nickel-cobalt alloy nanocatalysts for the alkaline HER through a simple synthetic route. This ternary nanostructure with a Cartesian-coordinate-like hexapod shape could be prepared by a one-step formation of core-dual shell Pt@Ni@Co nanostructures followed by a selective removal of the Ni@Co shell. The cobalt precursor brings about a significant impact on the control of size and shape of the nanostructure. The PtNiCo nanohexapods showed a superior alkaline HER activity to Pt/C and binary PtNi hexapods, with 10 times greater specific activity than Pt/C. In addition, the PtNiCo nanohexapods demonstrated excellent activity and durability for the oxygen reduction reaction in acidic media.clos

    MXene: an emerging two-dimensional material for future energy conversion and storage applications

    No full text
    The development of two-dimensional (2D) high-performance electrode materials is the key to new advances in the fields of energy conversion and storage. MXenes, a new intriguing family of 2D transition metal carbides, nitrides, and carbonitrides, have recently received considerable attention due to their unique combination of properties such as high electrical conductivity, hydrophilic nature, excellent thermal stability, large interlayer spacing, easily tunable structure, and high surface area. In this review, we discuss how 2D MXenes have emerged as efficient and economical nanomaterials for future energy applications. We highlight the promising potential of these materials in energy conversion and storage applications, such as water electrolyzers, lithium ion batteries, and supercapacitors. Finally, we present an outlook of the future development of MXenes for sustainable energy technologies

    Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell

    No full text
    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni3Cox@Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru4+) species, which can be modulated by the core compositions

    NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte

    No full text
    A layered β-NiOOH crystal with undercoordinated facets is an active and economically viable nonnoble catalyst for the oxygen evolution reaction (OER) in alkaline electrolytes. However, it is extremely difficult to enclose the β-NiOOH crystal with undercoordinated facets because of its inevitable crystal transformation to γ-NiOOH, resulting in the exfoliation of the catalytic surfaces. Herein, we demonstrate {111}-faceted Ni octahedra as the parent substrates whose surfaces are easily transformed to catalytically active β-NiOOH during the alkaline OER. Electron microscopic measurements demonstrate that the horizontally stacked β-NiOOH on the surfaces of Ni octahedra has resistance to further oxidation to γ-NiOOH. By contrast, significant crystal transformation and thus the exfoliation of the γ-NiOOH sheets can be observed on the surfaces of Ni cubes and rhombic dodecahedra (RDs). Electrocatalytic measurements show that the β-NiOOH formed on Ni octahedra exhibits highly enhanced OER durability compared to the Ni cubes, Ni RDs, and the state-of-the-art Ir/C catalysts. © 2018 American Chemical Society1

    Highly Crystalline Pd13Cu3S7 Nanoplates Prepared via Partial Cation Exchange of Cu1.81S Templates as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction

    No full text
    Chemical transformations via post-synthetic modification of colloidal nanocrystals have received great attention as a rational synthetic route to unprecedented nanostructures. In particular, cation exchange reaction is considered as an effective method to alter the composition of the starting nanostructures while maintaining the initial structural characteristics. Herein, we report the synthesis of highly crystalline Pd13Cu3S7 nanoplates (NPs) via partial cation exchange of the Cu1.81S phase by Pd cations, with Cu1.94S NPs and Pd13Cu3S7/Cu2-xS janus heterostructure as the intermediate phases. The highly crystalline Pd13Cu3S7 ternary NPs exhibit excellent electrocatalytic performance toward the hydrogen evolution reaction (HER) in acidic condition. The HER activity of Pd13Cu3S7 NPs with its overpotential as low as 64 mV at -10 mA cm-2 is superior to those of amorphous PdCuS and commercial Pd/C catalysts, demonstrating the importance of nanocrystal crystallinity in boosting the HER activity. They also exhibit excellent stability as compared to commercial Pt/C and Pd/C under strongly acidic conditions

    Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction

    No full text
    Developing highly active and structurally robust electrocatalysts for hydrogen evolution reaction (HER) is of paramount importance for sustainable and clean production of hydrogen. Metal sulphides exposing catalytically active sites, in particular, have been actively pursued as advanced HER catalysts. Herein we report high-performance Rh2S3-based HER catalysts with excellent activity and durability. Hollow Rh2S3 hexagonal nanoprisms with controlled size and thickness could be conveniently prepared by one-step formation of core-shell nanoprisms followed by the etching of the core, and they show high surface areas and highly exposed edge sites. The hollow Rh2S3 nanoprisms exhibit very high HER activity and excellent stability under harsh acidic conditions.close

    Synergistic Effect of Detection and Separation for Pathogen Using Magnetic Clusters

    No full text
    Early diagnosis of infectious diseases is important for treatment; therefore, selective and rapid detection of pathogenic bacteria is essential for human health. We report a strategy for highly selective detection and rapid separation of pathogenic microorganisms using magnetic nanoparticle clusters. Our approach to develop probes for pathogenic bacteria, including Salmonella, is based on a theoretically optimized model for the size of clustered magnetic nanoparticles. The clusters were modified to provide enhanced aqueous solubility and versatile conjugation sites for antibody immobilization. The clusters with the desired magnetic property were then prepared at critical micelle concentration (CMC) by evaporation-induced self-assembly (EISA). Two different types of target-specific antibodies for H- and O-antigens were incorporated on the cluster surface for selective binding to biological compartments of the flagella and cell body, respectively. For the two different specific binding properties, Salmonella were effectively captured with the O-antibody-coated polysorbate 80-coated magnetic nanoclusters (PCMNCs). The synergistic effect of combining selective targeting and the clustered magnetic probe leads to both selective and rapid detection of infectious pathogens
    corecore