81 research outputs found

    Cj0011c, a Periplasmic Single- and Double-Stranded DNA-Binding Protein, Contributes to Natural Transformation in Campylobacter jejuni

    Get PDF
    Campylobacter jejuni is an important bacterial pathogen causing gastroenteritis in humans. C. jejuni is capable of natural transformation, which is considered a major mechanism mediating horizontal gene transfer and generating genetic diversity. Despite recent efforts to elucidate the transformation mechanisms of C. jejuni, the process of DNA binding and uptake in this organism is still not well understood. In this study, we report a previously unrecognized DNA-binding protein (Cj0011c) in C. jejuni that contributes to natural transformation. Cj0011c is a small protein (79 amino acids) with a partial sequence homology to the C-terminal region of ComEA in Bacillus subtilis. Cj0011c bound to both single- and double-stranded DNA. The DNA-binding activity of Cj0011c was demonstrated with a variety of DNAs prepared from C. jejuni or Escherichia coli, suggesting that the DNA binding of Cj0011c is not sequence dependent. Deletion of the cj0011c gene from C. jejuni resulted in 10- to 50-fold reductions in the natural transformation frequency. Different from the B. subtilis ComEA, which is an integral membrane protein, Cj0011c is localized in the periplasmic space of C. jejuni. These results indicate that Cj0011c functions as a periplasmic DNA receptor contributing to the natural transformation of C. jejuni

    Roles of RpoN in the resistance of Campylobacter jejuni under various stress conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>is a leading foodborne pathogen worldwide. Despite the fastidious nature of <it>C. jejuni </it>growth, increasing numbers of human campylobacteriosis suggest that <it>C. jejuni </it>may possess unique mechanisms to survive under various stress conditions. <it>C. jejuni </it>possesses only three sigma factors (FliA, RpoD, and RpoN) and lacks stress-defense sigma factors. Since FliA and RpoD are dedicated to flagella synthesis and housekeeping, respectively, in this study, we investigated the role of RpoN in <it>C. jejuni</it>'s defense against various stresses.</p> <p>Results</p> <p>Survivability of an <it>rpoN </it>mutant was compared with the wild-type <it>C. jejuni </it>under various stress conditions. While the growth of the <it>rpoN </it>mutant was as comparably as that of the wild type in shaking cultures, the <it>rpoN </it>mutant exhibited significant survival defects when cultured statically. The <it>rpoN </it>mutant was more sensitive to osmotic stress (0.8% NaCl) with abnormally-elongated cell morphology. Compared to the wile type, the <it>rpoN </it>mutant was more susceptible to acid stress (pH 5) and more resistant to hydrogen peroxide. However, the <it>rpoN </it>mutation had little effect on the resistance of <it>C. jejuni </it>to alkaline pH, heat, cold and antimicrobials.</p> <p>Conclusions</p> <p>The results demonstrate that RpoN plays an important role in <it>C. jejuni</it>'s defense against various stresses which this bacterial pathogen may encounter during transmission to and infection of humans.</p

    Synergistic Effects of Anti-CmeA and Anti-CmeB Peptide Nucleic Acids on Sensitizing Campylobacter jejuni to Antibiotics

    Get PDF
    The CmeABC efflux pump in Campylobacter jejuni confers resistance to structurally divergent antimicrobials, and inhibition of CmeABC represents a promising strategy to control antibiotic-resistant Campylobacter. Antisense peptide nucleic acids (PNAs) targeting the three components of CmeABC were evaluated for inhibition of CmeABC expression. The result revealed a synergistic effect of the PNAs targeting CmeA and CmeB on sensitizing C. jejuni to antibiotics. This finding further demonstrates the feasibility of using PNAs to potentiate antibiotics against antibiotic-resistant Campylobacter

    Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host

    Get PDF
    Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain and is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health. To facilitate the control of macrolide-resistant Campylobacter, it is necessary to understand if macrolide resistance affects the fitness and transmission of Campylobacter in its natural host. In this study we conducted pairwise competitions and comingling experiments in chickens using clonally related and isogenic C. jejuni strains, which are either susceptible or resistant to erythromycin (Ery). In every competition pair, Ery-resistant (Eryr) Campylobacter was consistently outcompeted by the Ery-susceptible (Erys) strain. In the comingling experiments, Eryr Campylobacter failed to transmit to chickens precolonized by Erys Campylobacter, while isogenic Erys Campylobacter was able to transmit to and establish dominance in chickens precolonized by Eryr Campylobacter. The fitness disadvantage was linked to the resistance-conferring mutations in the 23S rRNA. These findings clearly indicate that acquisition of macrolide resistance impairs the fitness and transmission of Campylobacter in chickens, suggesting that the prevalence of macrolide-resistant C. jejuni will likely decrease in the absence of antibiotic selection pressure

    Transducer-Like Protein in Campylobacter jejuni With a Role in Mediating Chemotaxis to Iron and Phosphate

    Get PDF
    Chemotaxis-mediated motility enables Campylobacter jejuni to navigate through complex environmental gradients and colonize diverse niches. C. jejuni is known to possess several methyl accepting chemotaxis proteins (MCPs), also called transducer-like proteins (Tlps). While the role of some of the Tlps in chemotaxis has been identified, their regulation and role in virulence is still not very clear. Here, we investigated the contribution of Tlp2 to C. jejuni chemotaxis, stress survival and colonization of the chicken gastrointestinal tract. The Ξ”tlp2 deletion mutant showed decreased chemotaxis toward aspartate, pyruvate, inorganic phosphate (Pi), and iron (FeSO4). Transcriptional analysis of tlp2 with a promoter fusion reporter assay revealed that the tlp2 promoter (Ptlp2) was induced by Pi and iron, both in the ferrous (Fe2+) and ferric form (Fe3+). RT-PCR analysis using overlapping primers indicated that the phoX gene, located immediately downstream of tlp2, is co-transcribed with tlp2. A transcription start site was identified at 53 bp upstream of the tlp2 start codon. The Ξ”tlp2 mutant showed decreased colonization of the chicken gastrointestinal tract. Collectively, our findings revealed that the tlp2 plays a role in C. jejuni pathogenesis and colonization in the chicken host and its expression is regulated by iron

    Correction to: Metagenomic analysis of isolation methods of a targeted microbe, Campylobacter jejuni, from chicken feces with high microbial contamination

    Get PDF
    Following publication of the original article [1], the authors reported an error in Fig.Β 2. The correct figure is shown below

    Regulation of Oxidative Stress Response by CosR, an Essential Response Regulator in Campylobacter jejuni

    Get PDF
    CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni

    Functional Characterization of a Lipoprotein-Encoding Operon in Campylobacter jejuni

    Get PDF
    Background: Bacterial lipoproteins have important functions in bacterial pathogenesis and physiology. In Campylobacter jejuni, a major foodborne pathogen causing gastroenteritis in humans, the majority of lipoproteins have not been functionally characterized. Previously, we showed by DNA microarray that CmeR, a transcriptional regulator repressing the expression of the multidrug efflux pump CmeABC, modulates the expression of a three-gene operon (cj0089, cj0090, and cj0091) encoding a cluster of lipoproteins in C. jejuni. Methodology/Principal Findings: In this work, we characterized the function and regulation of the cj0089-cj0090-cj0091 operon. In contrast to the repression of cmeABC, CmeR activates the expression of the lipoprotein genes and the regulation is confirmed by immunoblotting using anti-Cj0089 and anti-Cj0091 antibodies. Gel mobility shift assay showed that CmeR directly binds to the promoter of the lipoprotein operon, but the binding is much weaker compared with the promoter of cmeABC. Analysis of different cellular fractions indicated that Cj0089 was associated with the inner membrane, while Cj0091 was located on the outer membrane. Inactivation of cj0091, but not cj0089, significantly reduced the adherence of C. jejuni to INT 407 cells in vitro, indicating that Cj0091 has a function in adherence. When inoculated into chickens, the Cj0091 mutant also showed a defect in early colonization of the intestinal tract, suggesting that Cj0091 contributes to Campylobacter colonization in vivo. It was also shown that Cj0091 was produced and immunogenic in chickens that wer
    • …
    corecore