Roles of RpoN in the resistance of Campylobacter jejuni under various stress conditions

Abstract

<p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>is a leading foodborne pathogen worldwide. Despite the fastidious nature of <it>C. jejuni </it>growth, increasing numbers of human campylobacteriosis suggest that <it>C. jejuni </it>may possess unique mechanisms to survive under various stress conditions. <it>C. jejuni </it>possesses only three sigma factors (FliA, RpoD, and RpoN) and lacks stress-defense sigma factors. Since FliA and RpoD are dedicated to flagella synthesis and housekeeping, respectively, in this study, we investigated the role of RpoN in <it>C. jejuni</it>'s defense against various stresses.</p> <p>Results</p> <p>Survivability of an <it>rpoN </it>mutant was compared with the wild-type <it>C. jejuni </it>under various stress conditions. While the growth of the <it>rpoN </it>mutant was as comparably as that of the wild type in shaking cultures, the <it>rpoN </it>mutant exhibited significant survival defects when cultured statically. The <it>rpoN </it>mutant was more sensitive to osmotic stress (0.8% NaCl) with abnormally-elongated cell morphology. Compared to the wile type, the <it>rpoN </it>mutant was more susceptible to acid stress (pH 5) and more resistant to hydrogen peroxide. However, the <it>rpoN </it>mutation had little effect on the resistance of <it>C. jejuni </it>to alkaline pH, heat, cold and antimicrobials.</p> <p>Conclusions</p> <p>The results demonstrate that RpoN plays an important role in <it>C. jejuni</it>'s defense against various stresses which this bacterial pathogen may encounter during transmission to and infection of humans.</p

    Similar works