456 research outputs found

    Structural consequences of nucleophosmin mutations in acute myeloid leukemia.

    Get PDF
    Mutations affecting NPM1 (nucleophosmin) are the most common genetic lesions found in acute myeloid leukemia (AML). NPM1 is one of the most abundant proteins found in the nucleolus and has links to the MDM2/p53 tumor suppressor pathway. A distinctive feature of NPM1 mutants in AML is their aberrant localization to the cytoplasm of leukemic cells. This mutant phenotype is the result of the substitution of several C-terminal residues, including one or two conserved tryptophan residues, with a leucine-rich nuclear export signal. The exact molecular mechanism underlying the loss of nucleolar retention, and the role of the tryptophans, remains unknown. In this study we have determined the structure of an independently folded globular domain in the C terminus of NPM1 using NMR spectroscopy, and we report that the conserved tryptophans are critical for structure. This domain is necessary for the nucleolar targeting of NPM1 and is disrupted by mutations in AML with cytoplasmic NPM1. Furthermore, we identify conserved surface-exposed lysine residues that are functionally rather than structurally important for nucleolar localization. This study provides new focus for efforts to understand the pathogenesis of AML with cytoplasmic NPM1 and may be used to aid the design of small molecules that target the C-terminal domain of NPM1 to act as novel anti-proliferative and anti-leukemia therapeutics

    Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange

    Get PDF
    AbstractThe extracellular ribonuclease from Bacillus amyloliquifaciens, barnase, forms a tightly-bound one-to-one complex with its intracellular inhibitor barstar. The barstar binding site on barnase was characterised by comparing the differences in the chemical shift and hydrogen-deuterium exchange rates between free and bound barnase. Chemical shift assignments of barnase in the complex with barstar were determined from 3D NOESY-HMQC and TOCSY-HMQC spectra of a complex that had been prepared with uniformly 15N-labelled barnase and unlabelled barstar. Hydrogen exchange rates were obtained from an analysis of a series of [15N]HMQC spectra of a sample prepared in the same manner exchanged into D2O. The largest changes in either chemical shift or hydrogen-deuterium exchange rate are observed for residues located in the active-site and substrate binding loops indicating that barstar inhibits barnase activity by sterically blocking the active site

    BMI and Mortality in UK Biobank:Revised Estimates Using Mendelian Randomization

    Get PDF
    Objective: The aim of this study was to obtain estimates of the causal relationship between BMI and mortality. Methods: Mendelian randomization (MR) with BMI‐associated genotypic variation was used to test the causal effect of BMI on all‐cause and cause‐specific mortality in UK Biobank participants of White British ancestry. Results: MR analyses supported a causal association between higher BMI and greater risk of all‐cause mortality (hazard ratio [HR] per 1 kg/m2: 1.03; 95% CI: 0.99‐1.07) and mortality from cardiovascular diseases (HR: 1.10; 95% CI: 1.01‐1.19), specifically coronary heart disease (HR: 1.12; 95% CI: 1.00‐1.25) and those excluding coronary heart disease/stroke/aortic aneurysm (HR: 1.24; 95% CI: 1.03‐1.48), stomach cancer (HR: 1.18; 95% CI: 0.87‐1.62), and esophageal cancer (HR: 1.22; 95% CI: 0.98‐1.53), and a decreased risk of lung cancer mortality (HR: 0.96; 95% CI: 0.85‐1.08). Sex stratification supported the causal role of higher BMI increasing bladder cancer mortality risk (males) but decreasing respiratory disease mortality risk (males). The J‐shaped observational association between BMI and mortality was visible with MR analyses, but the BMI at which mortality was minimized was lower and the association was flatter over a larger BMI range. Conclusions: Results support a causal role of higher BMI in increasing the risk of all‐cause mortality and mortality from several specific causes

    Recruitment of TBK1 to cytosol‐invading Salmonella induces WIPI2‐dependent antibacterial autophagy

    Get PDF
    Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti-bacterial autophagy relies on the core autophagy machinery, cargo receptors, and "eat-me" signals such as galectin-8 and ubiquitin that label bacteria as autophagy cargo. Anti-bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti-bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella-associated "eat-me" signals, including host-derived glycans and K48- and K63-linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host

    Genetic Risk Score for Coronary Disease Identifies Predispositions to Cardiovascular and Noncardiovascular Diseases.

    Get PDF
    BACKGROUND: The taxonomy of cardiovascular (CV) diseases is divided into a broad spectrum of clinical entities. Many such diseases coincide in specific patient groups and suggest shared predisposition. OBJECTIVES: This study focused on coronary artery disease (CAD) and investigated the genetic relationship to CV and non-CV diseases with reported CAD comorbidity. METHODS: This study examined 425,196 UK Biobank participants to determine a genetic risk score (GRS) based on 300 CAD associated variants (CAD-GRS). This score was associated with 22 traits, including risk factors, diseases secondary to CAD, as well as comorbid and non-CV conditions. Sensitivity analyses were performed in individuals free from CAD or stable angina diagnosis. RESULTS: Hypercholesterolemia (odds ratio [OR]: 1.27; 95% CI: 1.26 to 1.29) and hypertension (OR: 1.11; 95% CI: 1.10 to 1.12) were strongly associated with the CAD-GRS, which indicated that the score contained variants predisposing to these conditions. However, the CAD-GRS was also significant in patients with CAD who were free of CAD risk factors (OR: 1.37; 95% CI: 1.30 to 1.44). The study observed significant associations between the CAD-GRS and peripheral arterial disease (OR: 1.28; 95% CI: 1.23 to 1.32), abdominal aortic aneurysms (OR: 1.28; 95% CI: 1.20 to 1.37), and stroke (OR: 1.08; 95% CI: 1.05 to 1.10), which remained significant in sensitivity analyses that suggested shared genetic predisposition. The score was also associated with heart failure (OR: 1.25; 95% CI: 1.22 to 1.29), atrial fibrillation (OR: 1.08; 95% CI: 1.05 to 1.10), and premature death (OR: 1.04; 95% CI: 1.02 to 1.06). These associations were abolished in sensitivity analyses that indicated that they were secondary to prevalent CAD. Finally, an inverse association was observed between the score and migraine headaches (OR: 0.94; 95% CI: 0.93 to 0.96). CONCLUSIONS: A wide spectrum of CV conditions, including premature death, might develop consecutively or in parallel with CAD for the same genetic roots. In conditions like heart failure, the study found evidence that the CAD-GRS could be used to stratify patients with no or limited genetic overlap with CAD risk. Increased genetic predisposition to CAD was inversely associated with migraine headaches.National Institute of Health Research (NIHR) Barts Biomedical Research Centre - NIHR (IS-BRC-1215-20022)Fondation Leducq (CADgenomics, 12CVD02)Sonderforschungsbereich CRC 1123 (B2)German Federal Ministry of Education and Research (BMBF) (ERA-CVD: grant JTC2017_21-040

    Recruitment of TBK

    Get PDF
    Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti-bacterial autophagy relies on the core autophagy machinery, cargo receptors, and "eat-me" signals such as galectin-8 and ubiquitin that label bacteria as autophagy cargo. Anti-bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti-bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella-associated "eat-me" signals, including host-derived glycans and K48- and K63-linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host

    Parent of origin genetic effects on methylation in humans are common and influence complex trait variation

    Get PDF
    Parent-of-origin effects (POE) are observed when there are different effects from alleles inherited from the two parents on phenotypic measures. Here, Zeng et al. study POE on DNA methylation in 5,101 individuals and identify genetic variants that associate with methylation variation via POE and their potential phenotypic consequences
    corecore