4 research outputs found

    Thermal and Electromagnetic Properties of Polymer Holey Structures Produced by Additive Manufacturing

    Get PDF
    Multifunctional 3D-printed holey structures made of composite polymers loaded with nanocarbon were designed to serve simultaneously as GHz-radiation absorbing layers and heat conductors. The geometry of the structures was devised to allow heat to be easily transferred through, with special attention paid to thermal conductivity. Numerical calculations and a simple homogenization theory were conducted in parallel to address this property. Different structures have been considered and compared. The electromagnetic shielding effectiveness of the produced holey structures was measured in the microwave range

    Laser patterning of aligned carbon nanotubes arrays: morphology, surface structure, and interaction with terahertz radiation

    No full text
    The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO2 laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power. Laser treatment does not destroy the alignment of MWCNTs while removing their poorly ordered external layers. The products of oxidative destruction of these layers deposit on the surfaces of newly produced arrays. The oxygen groups resulting from the CO2 laser treatment improve the wettability of nanotube arrays with an epoxy resin. We show that the patterned MWCNT arrays absorb the THz radiation more strongly than the as-synthesized arrays. Moreover, the pattern influences the frequency behavior of the absorbance

    Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation

    Get PDF
    The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO2 laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power. Laser treatment does not destroy the alignment of MWCNTs while removing their poorly ordered external layers. The products of oxidative destruction of these layers deposit on the surfaces of newly produced arrays. The oxygen groups resulting from the CO2 laser treatment improve the wettability of nanotube arrays with an epoxy resin. We show that the patterned MWCNT arrays absorb the THz radiation more strongly than the as-synthesized arrays. Moreover, the pattern influences the frequency behavior of the absorbance
    corecore