8 research outputs found

    Regulation of the plant plasma membrane H+-ATPase

    No full text

    The evolutionarily conserved iron-sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis.

    No full text
    The assembly of respiratory complexes is a multistep process, requiring coordinate expression of mitochondrial and nuclear genes and cofactor biosynthesis. We functionally characterized the iron-sulfur protein required for NADH dehydrogenase (INDH) in the model plant Arabidopsis thaliana. An indh knockout mutant lacked complex I but had low levels of a 650-kD assembly intermediate, similar to mutations in the homologous NUBPL (nucleotide binding protein-like) in Homo sapiens. However, heterozygous indh/+ mutants displayed unusual phenotypes during gametogenesis and resembled mutants in mitochondrial translation more than mutants in complex I. Gradually increased expression of INDH in indh knockout plants revealed a significant delay in reassembly of complex I, suggesting an indirect role for INDH in the assembly process. Depletion of INDH protein was associated with decreased (35)S-Met labeling of translation products in isolated mitochondria, whereas the steady state levels of several mitochondrial transcripts were increased. Mitochondrially encoded proteins were differentially affected, with near normal levels of cytochrome c oxidase subunit2 and Nad7 but little Nad6 protein in the indh mutant. These data suggest that INDH has a primary role in mitochondrial translation that underlies its role in complex I assembly

    Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with 14-3-3 Protein

    No full text
    Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an Arabidopsis thaliana Ser/Thr protein kinase, PKS5, is a negative regulator of the plasma membrane proton pump (PM H+-ATPase). Loss-of-function pks5 mutant plants are more tolerant of high external pH due to extrusion of protons to the extracellular space. PKS5 phosphorylates the PM H+-ATPase AHA2 at a novel site, Ser-931, in the C-terminal regulatory domain. Phosphorylation at this site inhibits interaction between the PM H+-ATPase and an activating 14-3-3 protein in a yeast expression system. We show that PKS5 interacts with the calcium binding protein SCaBP1 and that high external pH can trigger an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM H+-ATPase regulation
    corecore