12 research outputs found

    Cationic sterically stabilized diblock copolymer nanoparticles exhibit exceptional tolerance toward added salt

    Get PDF
    For certain commercial applications such as enhanced oil recovery, sterically stabilized colloidal dispersions that exhibit high tolerance toward added salt are desirable. Herein, we report a series of new cationic diblock copolymer nanoparticles that display excellent colloidal stability in concentrated aqueous salt solutions. More specifically, poly(2-(acryloyloxy)ethyltrimethylammonium chloride) (PATAC) has been chain-extended by reversible addition–fragmentation chain transfer aqueous dispersion polymerization of diacetone acrylamide (DAAM) at 70 °C to produce PATAC100–PDAAMx diblock copolymer spheres at 20% w/w solids via polymerization-induced self-assembly. Transmission electron microscopy and dynamic light scattering (DLS) analysis confirm that the mean sphere diameter can be adjusted by systematic variation of the mean degree of polymerization of the PDAAM block. Remarkably, DLS studies confirm that highly cationic PATAC100–PDAAM1500 spheres retain their colloidal stability in the presence of either 4.0 M KCl or 3.0 M ammonium sulfate for at least 115 days at 20 °C. The mole fraction of PATAC chains within the stabilizer shell was systematically varied by the chain extension of various binary mixtures of non-ionic poly(N,N-dimethylacrylamide) (PDMAC) and cationic PATAC with DAAM to produce ([n] PATAC100 + [1 – n] PDMAC67)–PDAAMz diblock copolymer spheres at 20% w/w. DLS studies confirmed that a relatively high mole fraction of cationic PATAC stabilizer chains (n ≥ 0.75) is required for the dispersions to remain colloidally stable in 4.0 M KCl. Cationic worms and vesicles could also be synthesized using a binary mixture of PATAC and PDMAC precursors, where n = 0.10. However, the vesicles only remained colloidally stable up to 1.0 M KCl, whereas the worms proved to be stable up to 2.0 M KCl. Such block copolymer nanoparticles are expected to be useful model systems for understanding the behavior of aqueous colloidal dispersions in extremely salty media. Finally, zeta potentials determined using electrophoretic light scattering are presented for such nanoparticles dispersed in highly salty media

    Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution

    Get PDF
    Various carboxylic acid-functionalized poly( N , N -dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC-PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40-58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC-PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40-PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2-3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC-PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms

    Self-assembly of amphiphilic statistical copolymers and their aqueous rheological properties

    Get PDF
    A range of poly(n-butyl methacrylate-stat-methacrylic acid) [P(BMA-stat-MAA)] statistical copolymers of various compositions and molecular weights ranging from 5 to 30 kDa were prepared using either reversible addition-fragmentation chain transfer (RAFT) solution copolymerization or conventional free radical polymerization in isopropanol (IPA). On dilution with water, these amphiphilic copolymers self-assembled to form spherical nano-objects as confirmed by small-angle X-ray scattering (SAXS) and transmission electron microscopy. Various structural particle models were examined to extract information regarding the mean nano-object size and morphology. It is found that nano-object radii are independent of copolymer molecular weight, but depend on the copolymer composition: the smaller the amount of MAA units in the molecules the larger the nanoobjects are formed. Combined SAXS and aqueous electrophoretic measurements indicated that most of the MAA units are located at the nano-object surface. Furthermore, SAXS and rheology measurements were used to monitor the effect of solvent composition on the copolymer morphology both at a fixed copolymer concentration (either 1 wt% or 25 wt%) and also for a gradual variation in copolymer 2 concentrations (from 1 wt% to 40 wt%) when adding water to the initial copolymer solution in IPA. These studies revealed that the copolymers are present in solution as molecularly-dissolved Gaussian chains when the solvent composition is IPA-rich. However, the copolymer chains self-assemble into spherical nano-objects when the solvent composition is water-rich. At intermediate solvent compositions, SAXS analysis confirmed the formation of an interconnected nano-object network, which accounts for the apparently anomalous increase in solution viscosity on dilution indicated by rheology measurements

    Silica nanoparticle-loaded thermoresponsive block copolymer vesicles: a new post-polymerization encapsulation strategy and thermally triggered release

    Get PDF
    A thermoresponsive amphiphilic diblock copolymer that can form spheres, worms or vesicles in aqueous media at neutral pH by simply raising the dispersion temperature from 1 °C (spheres) to 25 °C (worms) to 50 °C (vesicles) is prepared via polymerization-induced self-assembly (PISA). Heating such an aqueous copolymer dispersion from 1 °C up to 50 °C in the presence of 19 nm glycerol-functionalized silica nanoparticles enables this remarkable ‘shape-shifting’ behavior to be exploited as a new post-polymerization encapsulation strategy. The silica-loaded vesicles formed at 50 °C are then crosslinked using a disulfide-based dihydrazide reagent. Such covalent stabilization enables the dispersion to be cooled to room temperature without loss of the vesicle morphology, thus aiding characterization and enabling the loading efficiency to be determined as a function of both copolymer and silica concentration. Small-angle X-ray scattering (SAXS) analysis indicated a mean vesicle membrane thickness of approximately 20 ± 2 nm for the linear vesicles and TEM studies confirmed encapsulation of the silica nanoparticles within these nano-objects. After removal of the non-encapsulated silica nanoparticles via multiple centrifugation–redispersion cycles, thermogravimetric analysis indicated that vesicle loading efficiencies of up to 86% can be achieved under optimized conditions. Thermally-triggered release of the silica nanoparticles is achieved by cleaving the disulfide bonds at 50 °C using tris(2-carboxyethyl)phosphine (TCEP), followed by cooling to 20 °C to induce vesicle dissociation. SAXS is also used to confirm the release of silica nanoparticles by monitoring the disappearance of the structure factor peak arising from silica–silica interactions

    Characterising the role of water in sildenafil citrate by NMR crystallography

    Get PDF
    A combination of solid-state NMR techniques, including 13C/1H correlation, 2H magic-angle spinning NMR and first principles calculation are employed to characterise the role of water in different hydration states of sildenafil citrate. The 13C spectrum is fully assigned for the first time and direct correlations made with respect to the crystal structure. 2H magic-angle spinning NMR is demonstrated to be a powerful tool for the study of dynamic and exchange processes in complex hydrate systems, allowing the behaviour at multiple solvate sites to be characterised without the need for expensive and selective labelling. Use of the 2H double-quantum frequency allows resolution of the different sites and, consequently, data fitting to determine rates of spin-diffusion between the different sites. The water is shown to be highly dynamic, undergoing C2 rotation, with chemical exchange between different water molecules and also with the host structure. The methods adopted are applicable to the investigation of an extensive range of hydration types found in pharmaceutical drug substances

    Foreign Body Aspiration: Imaging Aspects

    No full text
    corecore