27 research outputs found

    Stress exposure alters brain mRNA expression of the genes involved in insulin signalling, an effect modified by a high fat/high fructose diet and cinnamon supplement

    Get PDF
    In occidental societies, high fat and high sugar diets often coincide with episodes of stress. The association is likely to modify brain energy control. Brain insulin signalling is rarely studied in stressed individuals consuming high fat diets. Furthermore the effects of cinnamon supplement are not known in these conditions. Therefore, we exposed rats, over a 12-week period, to a control (C) or a high fat/high fructose (HF/HFr) diet that induces peripheral insulin resistance. A cinnamon supplement (C+CN and HF/HFr +CN) was added or not. After diet exposure, one group of rats was exposed to a 30-min restraint followed by a 10-min open-field test, their combination featuring a moderate stressor, the other rats staying unstressed in their home cages. The insulin signalling in hippocampus and frontal cortex was studied through the mRNA expression of the following genes: insulin receptor (Ir), insulin receptor substrate (Irs1), glucose transporters (Glut1 and Glut3), glycogen synthase (Gys1) and their modulators, Akt1 and Pten. In C rats, stress enhanced the expression of Ir, Irs1, Glut1, Gys1 and Akt1 mRNA. In C+CN rats, stress induced an increase in Pten but a decrease in Gys1 mRNA expression. In HF/HFr rats, stress was associated with an increase in Pten mRNA expression. In HF/HFr+CN rats, stress increased Pten mRNA expression but also decreased Gys1 mRNA expression. This suggests that a single moderate stress favours energy refilling mechanisms, an effect blunted by a previous HF/HFr diet and cinnamon supplement

    Comparison of Magnetic Resonance Imaging in Live vs. Post Mortem Rat Brains

    Get PDF
    Magnetic Resonance Imaging (MRI) is an increasingly popular technique for examining neurobiology in rodents because it is both noninvasive and nondestructive. MRI scans can be acquired from either live or post mortem specimens. In vivo scans have a key advantage in that subjects can be scanned at multiple time-points in longitudinal studies. However, repeated exposure to anesthesia and stress may confound studies. In contrast, post mortem scans offer improved image quality and increased signal-to-noise ratio (SNR) due to several key advantages: First, the images are not disrupted by motion and pulsation artifacts. Second, they allow the brain tissue to be perfused with contrast agents, enhancing tissue contrast. Third, they allow longer image acquisition times, yielding higher resolution and/or improved SNR. Fourth, they allow assessment of groups of animals at the same age without scheduling complications. Despite these advantages, researchers are often skeptical of post mortem MRI scans because of uncertainty about whether the fixation process alters the MRI measurements. To address these concerns, we present a thorough comparative study of in vivo and post mortem MRI scans in healthy male Wistar rats at three age points throughout adolescence (postnatal days 28 through 80). For each subject, an in vivo scan was acquired, followed by perfusion and two post mortem scans at two different MRI facilities. The goal was to assess robustness of measurements, to detect any changes in volumetric measurements after fixation, and to investigate any differential bias that may exist between image acquisition techniques. We present this volumetric analysis for comparison of 22 anatomical structures between in vivo and post mortem scans. No significant changes in volumetric measurements were detected; however, as hypothesized, the image quality is dramatically improved in post mortem scans. These findings illustrate the validity and utility of using post mortem scans in volumetric neurobiological studies

    Assessment of stress responses in rhesus macaques (Macaca mulatta) to daily routine procedures in system neuroscience based on salivary cortisol concentrations

    No full text
    Non-human primates participating in neurophysiological research are exposed to potentially stressful experimental procedures, such as dietary control protocols, surgical implants and their maintenance, or social separation during training and experimental session. Here, we investigated the effect of controlled access to fluid, surgical implants, implant-related cleaning of skin margins, and behavioral training sessions on salivary cortisol levels of adult male rhesus macaques participating in neurophysiological research. The animals were trained to chew flavored cotton swabs to non-invasively collect saliva samples. Our data show no differences in cortisol levels between animals with and without implants, but both, controlled access to fluid and cleaning of implants individually increased salivary cortisol concentrations, while both together did not further increase the concentration. Specifically, before cleaning, individuals with controlled access to fluid had 55% higher cortisol concentrations than individuals with free access to fluid. Under free access to fluid, cortisol concentrations were 27% higher after cleaning while no effect of cleaning was found for individuals under controlled fluid access. Training sessions under controlled access to fluid also did not affect salivary cortisol concentrations. The observed changes in cortisol concentrations represent mild stress responses, as they are only a fraction of the range of the regular circadian changes in cortisol levels in rhesus monkeys. They also indicate that combinations of procedures do not necessarily lead to cumulative stress responses. Our results indicate that salivary cortisol levels of rhesus monkeys respond to neurophysiological experimental procedures and, hence, may be used to assess further refinements of such experimental methods.peerReviewe
    corecore