16 research outputs found

    Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing

    Get PDF
    Objective This study aimed to elucidate the underlying gene regions responsible for productive, phenotypic or adaptive traits in different ecological types of Tibetan sheep and the discovery of important genes encoding valuable traits. Methods We used whole-genome resequencing to explore the genetic relationships, phylogenetic tree, and population genetic structure analysis. In addition, we identified 28 representative Tibetan sheep single-nucleotide polymorphisms (SNPs) and genomic selective sweep regions with different traits in Tibetan sheep by fixation index (Fst) and the nucleotide diversity (θπ) ratio. Results The genetic relationships analysis showed that each breed partitioned into its own clades and had close genetic relationships. We also identified many potential breed-specific selective sweep regions, including genes associated with hypoxic adaptability (MTOR, TRHDE, PDK1, PTPN9, TMTC2, SOX9, EPAS1, PDGFD, SOCS3, TGFBR3), coat color (MITF, MC1R, ERCC2, TCF25, ITCH, TYR, RALY, KIT), wool traits (COL4A2, ERC2, NOTCH2, ROCK1, FGF5, SOX9), and horn phenotypes (RXFP2). In particular, a horn-related gene, RXFP2, showed the four most significantly associated SNP loci (g. 29481646 A>G, g. 29469024 T>C, g. 29462010 C>T, g. 29461968 C>T) and haplotypes. Conclusion This finding demonstrates the potential for genetic markers in future molecular breeding programs to improve selection for horn phenotypes. The results will facilitate the understanding of the genetic basis of production and adaptive unique traits in Chinese indigenous Tibetan sheep taxa and offer a reference for the molecular breeding of Tibetan sheep

    A Self-Adaptive Damping Control Strategy of Virtual Synchronous Generator to Improve Frequency Stability

    No full text
    In a microgrid, grid-connected inverters, as the interface between the distributed power supply and grid, cannot provide inertia support for the system. The control strategy of virtual synchronous generator (VSG) based on grid-connected inverters can enhance the stability of system frequency. In order to make the frequency response that has a smaller overshoot and a shorter settling time, a self-adaptive damping control strategy based on the relationship between the damping and the maximum frequency deviation for microgrid VSG is presented. The small-signal mathematical model of VSG is established, and the range of the damping coefficient is determined. Finally, simulation experiments are carried out with MATLAB/Simulink, and the effectiveness of the proposed control strategy is verified by comparing it with various damping control methods

    Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep

    No full text
    The identification of candidate genes and genetic variations associated with growth traits is important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1 receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result indicated three SNPs in IGF1 were significantly associated with four growth traits (p < 0.05). In IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits (p < 0.05). The combined haplotype H5H5 and H5H6 in IGF1R showed the strong association with 12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and haplotype combinations associated with the growth traits, which provided genetic resources for marker-assisted selection (MAS) in Hulun Buir sheep breeding

    Genetic Polymorphisms of <i>IGF1</i> and <i>IGF1R</i> Genes and Their Effects on Growth Traits in Hulun Buir Sheep

    No full text
    The identification of candidate genes and genetic variations associated with growth traits is important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1 receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result indicated three SNPs in IGF1 were significantly associated with four growth traits (p IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits (p IGF1R showed the strong association with 12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and haplotype combinations associated with the growth traits, which provided genetic resources for marker-assisted selection (MAS) in Hulun Buir sheep breeding

    A Full-Scale Experimental Validation of Electromagnetic Time Reversal Applied to Locate Disturbances in Overhead Power Distribution Lines

    No full text
    Electromagnetic time reversal (EMTR) has emerged as a promising technique to locate disturbances in power grids, thanks to its location accuracy and robustness against parameters uncertainties. Furthermore, in a reflective medium, like the one of a power network, it has been shown that the method requires no more than one single observation point. In this paper, we present an experimental validation of EMTR to locate disturbances in real power networks. The validation is performed on a full-scale unenergized 677-m-long, double-circuit 10-kV overhead distribution line. The disturbance is emulated by a voltage pulse injected between one of the line conductors and the ground using a high-voltage pulse generator. The frequency spectrum of the injected voltage pulse is specified such that the originated electromagnetic transients are compatible with those of power line faults, lightning, and conducted intentional electromagnetic interferences. The transient currents generated by the emulated disturbance are measured at one end of the line, considering two different line configurations. According to the EMTR technique, the measured signals are time reversed and back injected into the system that, in our case, is a simulated model of the considered distribution line. More specifically, it is represented by a constant-parameter line model implemented within the EMTP-RV simulation environment. For both cases, the disturbance is accurately located, and the phase of the circuit at which the pulse was injected is also identified

    Identification of Somatostatin Receptor Subtype 1 (SSTR1) Gene Polymorphism and Their Association with Growth Traits in Hulun Buir Sheep

    No full text
    This study was conducted to evaluate SSTR1 gene polymorphisms and their association with growth traits in Hulun Buir sheep. We followed 233 Hulun Buir sheep from birth to 16 months of age, born in the same pasture and on the same year under a consistent grazing conditions. The body weight (BW), body height (BH), body length (BL), chest circumference (ChC), chest depth (ChD), chest width (ChW), hip width (HW), and cannon circumference (CaC) were measured and recorded at birth, 4 months, 9 months, and 16 months of age. The polymorphisms of the SSTR1 gene in Hulun Buir sheep were excavated using exon sequencing, and association analyses of between SNPs and growth traits at each growth stage were conducted. The results showed that there were four SNPs in Exon 2 of the SSTR1 gene, SNP1, SNP2, and SNP3 were low mutation sites, and SNP4 was a moderate mutation site. Four SNPs were consistent with Hardy&ndash;Weinberg equilibrium, and all of them were synonymous mutations. The association analyses found that the genotypes of SNP2 were significantly associated with WW and BH at 4 months of age, BW, BL, ChC, and HW at 9 months of age (p &lt; 0.05), and extremely significantly associated with ChD at 4 and 9 months of age (p &lt; 0.01). There were significant associations between SNP3 and BH at 9 months of age, between SNP4 and ChD, ChW, and CaC at 9 months of age, and BW and ChC at 16 months of age (p &lt; 0.05). There were no detectable associations with growth traits among the seven haplotypes between the SNP1, 3, and 4 of a strong linkage disequilibrium (p &gt; 0.05). These results indicated that SNP2, SNP3, and SNP4 may be used as molecular markers for growth traits of Hulun Buir sheep

    Honokiol Ameliorates Myocardial Ischemia/Reperfusion Injury in Type 1 Diabetic Rats by Reducing Oxidative Stress and Apoptosis through Activating the SIRT1-Nrf2 Signaling Pathway

    No full text
    Reducing oxidative stress is a crucial therapeutic strategy for ameliorating diabetic myocardial ischemia/reperfusion (MI/R) injury. Honokiol (HKL) acts as an effective cardioprotective agent for its strong antioxidative activity. However, its roles and underlying mechanisms against MI/R injury in type 1 diabetes (T1D) remain unknown. Since SIRT1 and Nrf2 are pivotal regulators in diabetes mellitus patients suffering from MI/R injury, we hypothesized that HKL ameliorates diabetic MI/R injury via the SIRT1-Nrf2 signaling pathway. Streptozotocin-induced T1D rats and high-glucose-treated H9c2 cells were exposed to HKL, with or without administration of the SIRT1 inhibitor EX527, SIRT1 siRNA, or Nrf2 siRNA, and then subjected to I/R operation. We found that HKL markedly improved the postischemic cardiac function, decreased the infarct size, reduced the myocardial apoptosis, and diminished the reactive oxygen species generation. Intriguingly, HKL remarkably activated SIRT1 signaling, enhanced Nrf2 nuclear translocation, increased antioxidative signaling, and decreased apoptotic signaling. However, these effects were largely abolished by EX527 or SIRT1 siRNA. Additionally, our cellular experiments showed that Nrf2 siRNA blunted the cytoprotective effects of HKL, without affecting SIRT1 expression and activity. Collectively, these novel findings indicate that HKL abates MI/R injury in T1D by ameliorating myocardial oxidative damage and apoptosis via the SIRT1-Nrf2 signaling pathway
    corecore