10 research outputs found

    Melatonin synthesis in the human pineal gland

    Get PDF
    Poster presentation: The mammalian pineal organ is a peripheral oscillator, depending on afferent information from the so-called master clock in the suprachiasmatic nuclei of the hypothalamus. One of the best studied outputs of the pineal gland is the small and hydrophobic molecule melatonin. In all vertebrates, melatonin is synthesized rhythmically with high levels at night, signalling the body the duration of the dark period. Changes or disruptions of melatonin rhythms in humans are related to a number of pathophysiological disorders, like Alzheimer's disease, seasonal affective disorder or the Smith-Magenis-Syndrome. To use melatonin in preventive or curative interferences with the human circadian system, a complete understanding of the generation of the rhythmic melatonin signal in the human pineal gland is essential. Melatonin biosynthesis is best studied in the rodent pineal gland, where the activity of the penultimate and rate-limiting enzyme, the arylalkylamine N-acetyltransferase (AA-NAT), is regulated on the transcriptional level, whereas the regulatory role of the ultimate enzymatic step, achieved by the hydroxyindole O-methyltransferase (HIOMT), is still under debate. In rodents, Aa-nat mRNA is about 100-fold elevated during the night in response to adrenergic stimulation of the cAMP-signalling pathway, with AA-NAT protein levels closely following this dynamics. In contrast, in all ungulates studied so far (cow, sheep), a post-transcriptional regulation of the AA-NAT is central to determine rhythmic melatonin synthesis. AA-NAT mRNA levels are constantly elevated, and lead to a constitutive up-regulation of AA-NAT protein, which is, however, rapidly degraded via proteasomal proteolysis during the day. AA-NAT proteolysis is only terminated upon the nocturnal increase in cAMP levels. Similar to ungulates, a post-transcriptional control of this enzyme seems evident in the pineal gland of the primate Macaca mulatta. Studies on the molecular basis of melatonin synthesis in the human being are sparse and almost exclusively based on phenomenological data, derived from non-invasive investigations. Yet the molecular mechanisms underlying the generation of the hormonal message of darkness can currently only be deciphered using autoptic material. We therefore analyzed in human post-mortem pineal tissue Aa-nat and Hiomt mRNA levels, AA-NAT and HIOMT enzyme activity, and melatonin levels for the first time simultaneously within tissue samples of the same specimen. Here presented data show the feasibility of this approach. Our results depict a clear diurnal rhythm in AA-NAT activity and melatonin content, despite constant values for Aa-nat and Hiomt mRNA, and for HIOMT activity. Notably, the here elevated AA-NAT activity during the dusk period does not correspond to a simultaneous elevation in melatonin content. It is currently unclear whether this finding may suggest a more important role of the ultimate enzyme in melatonin synthesis, the HIOMT, for rate-limiting the melatonin rhythm, as reported recently for the rodent pineal gland. Thus, our data support for the first time experimentally that post-transcriptional mechanisms are responsible for the generation of rhythmic melatonin synthesis in the human pineal gland

    Melatonin synthesis in the human pineal gland

    Get PDF

    Float, explode or sink: postmortem fate of lung-breathing marine vertebrates

    Get PDF
    What happens after the death of a marine tetrapod in seawater? Palaeontologists and neontologists have claimed that large lung-breathing marine tetrapods such as ichthyosaurs had a lower density than seawater, implying that their carcasses floated at the surface after death and sank subsequently after leakage of putrefaction gases (or ‘‘carcass explosions''). Such explosions would thus account for the skeletal disarticulation observed frequently in the fossil record. We examined the taphonomy and sedimentary environment of numerous ichthyosaur skeletons and compared them to living marine tetrapods, principally cetaceans, and measured abdominal pressures in human carcasses. Our data and a review of the literature demonstrate that carcasses sink and do not explode (and spread skeletal elements). We argue that the normally slightly negatively buoyant carcasses of ichthyosaurs would have sunk to the sea floor and risen to the surface only when they remained in shallow water above a certain temperature and at a low scavenging rate. Once surfaced, prolonged floating may have occurred and a carcass have decomposed gradually. Our conclusions are of significance to the understanding of the inclusion of carcasses of lung-breathing vertebrates in marine nutrient recycling. The postmortem fate has essential implications for the interpretation of vertebrate fossil preservation (the existence of complete, disarticulated fossil skeletons is not explained by previous hypotheses), palaeobathymetry, the physiology of modern marine lung-breathing tetrapods and their conservation, and the recovery of human bodies from seawate

    Gewaltambulanz

    No full text
    Am Uni-Kli­ni­kum Heidelberg hat die erste Ge­walt­ambu­lanz in Baden-WĂŒrttemberg eröffnet. Sie steht Hilfesuchenden offen, unabhĂ€ngig von Alter, Geschlecht, Herkunft oder finanzieller Situation. "Campus-Report" heißt die Radiosendung der UniversitĂ€ten Heidelberg, Mannheim, Karlsruhe und Freiburg. Die Reportagen ĂŒber aktuelle Themen aus Forschung und Wissenschaft werden montags bis freitags jeweils um ca. 19.10h im Programm von Radio Regenbogen gesendet. (Empfang in Nordbaden: UKW 102,8. In Mittelbaden: 100,4 und in SĂŒdbaden: 101,1

    The Legal Importance of Blood Alcohol Limits for Driving in German Law with a Comparative Study of Emirati and Egyptian Legislation

    No full text
    Driving under the influence of alcohol or drugs (DUI) is a crime or offence according to the laws of most countries. DUI increases the risk of traffic accidents as well as the severity and outcome of injuries that result from them. Some countries have a sophisticated control system to monitor DUI of alcohol in all traffic accidents. There is variation between different countries regarding the concept of driving under the influence of alcohol as well as the legal limits of Blood Alcohol Concentration (BAC) and the requirements to test the victims of accidents. This paper reviews the limit values for BAC in German traffic law (Administrative Offences Act), which stipulates a BAC value of 0.50 mg/g and a breath alcohol value of 0.25 mg/L as a marginal value for the application of punitive measures. German criminal law defines the minimum BAC values of relative unfitness to drive and absolute unfitness to drive as 0.3 mg/g and 1.10 mg/g, respectively (1.60 mg/g for cyclists).The minimum BAC values representing significant impairment and absolute impairment in criminal cases are 2.00 mg/g and 3.00 mg/g, respectively. Different penalties and legal consequences result according to the BAC level of an offender. In contrast, only eight out of twenty-two Arab countries recognise BAC limit values only in traffic laws. In Jordan, the BAC limit is 0.75 mg/g (0.08 g/dL).in the UAE, the BAC limit is 0.094 mg/g (0.01 g/dL), while Egyptian law does not recognise BAC values in the application of sanctions: the mere presence of alcohol in blood, regardless of its concentration and effect, is a sufficient and adequate condition for punishment. Accordingly, this study encourages lawmakers in Arab countries to define the limit values for BAC when investigating any crime in general and traffic offences in particular, in close cooperation with forensic doctors and toxicologists. It urges them to consider different BAC and their effects in relation to traffic offences. It also encourages them to take into account the principle of hierarchy in criminal liability when a crime is committed under the influence of alcohol

    Characterization of human melatonin synthesis using autoptic pineal tissue

    No full text
    The mammalian pineal gland synthesizes rhythmically the hormone melatonin, which provides the body with a signal coding the duration of the night period. The ultimate enzymatic step in melatonin synthesis is achieved by the hydroxyindole O-methyltransferase (HIOMT); the rate-limiting enzyme is, however, the arylalkylamine N-acetyltransferase (AA-NAT). In contrast to the central importance of a transcriptional regulation of the Aa-nat gene for rodent melatonin synthesis, mechanisms in the human pineal gland are elusive. Therefore, pineal tissue, taken from regular autopsies (n = 69; postmortem intervals ranging from 9 to 147 h) was analyzed simultaneously for Aa-nat and Hiomt mRNA levels by PCR, AA-NAT activity using (14)C-acetyl-coenzyme A, HIOMT activity using S-adenosyl-l-[(14)C]-methionine, and melatonin content using an ELISA. Results were allocated to asserted time-of-death groups (day, 1,000 to 1,630 h; dusk, 1,630 to 2,200 h; night, 2,200 to 0730 h; dawn, 0730 to 1,000 h). RNA degradation rates of genes of interest ran in parallel, and, therefore, data normalization could be established, regardless of postmortem delay in tissue sampling. Aa-nat and Hiomt mRNA and HIOMT activity showed no diurnal rhythm. In contrast, a significant rhythm was found for the correlation between time of death and both AA-NAT activity and melatonin content, with elevated values during dusk and night. Presented data demonstrate that postmortem brain tissue can be used to detect the remnant of premortem adaptive changes in neuronal activity. In particular, our results give strong experimental support for the idea that transcriptional mechanisms are not dominant for the generation of rhythmic melatonin synthesis in the human pineal gland.</p

    Float, explode or sink: postmortem fate of lung-breathing marine vertebrates

    Full text link
    What happens after the death of a marine tetrapod in seawater? Palaeontologists and neontologists have claimed that large lung-breathing marine tetrapods such as ichthyosaurs had a lower density than seawater, implying that their carcasses floated at the surface after death and sank subsequently after leakage of putrefaction gases (or ‘‘carcass explosions’’). Such explosions would thus account for the skeletal disarticulation observed frequently in the fossil record. We examined the taphonomy and sedimentary environment of numerous ichthyosaur skeletons and compared them to living marine tetrapods, principally cetaceans, and measured abdominal pressures in human carcasses. Our data and a review of the literature demonstrate that carcasses sink and do not explode (and spread skeletal elements). We argue that the normally slightly negatively buoyant carcasses of ichthyosaurs would have sunk to the sea floor and risen to the surface only when they remained in shallow water above a certain temperature and at a low scavenging rate. Once surfaced, prolonged floating may have occurred and a carcass have decomposed gradually. Our conclusions are of significance to the understanding of the inclusion of carcasses of lung-breathing vertebrates in marine nutrient recycling. The postmortem fate has essential implications for the interpretation of vertebrate fossil preservation (the existence of complete, disarticulated fossil skeletons is not explained by previous hypotheses), palaeobathymetry, the physiology of modern marine lung-breathing tetrapods and their conservation, and the recovery of human bodies from seawater
    corecore