53 research outputs found
"Cut wires grating – single longitudinal wire" planar metastructure to achieve microwave magnetic resonance in a single wire
Here we present metastructures containing cut-wire grating and a single longitudinal cut-wire orthogonal to grating’s wires. Experimental investigations at microwaves show these structures can provide strong magnetic resonant response of a single nonmagnetic cut-wire in dependence on configuration and sizes in the case when metastructures are oriented along the direction of wave propagation and cut-wires of grating are parallel to the electric field of a plane electromagnetic wave. It is suggested a concept of magnetic response based on antiparallel resonant currents excited by magnetic field of surface polaritons in many spatial LC-circuits created from cut-wire pairs of a grating and section of longitudinal cut-wire. Three separately observed resonant effects connected with grating, LC-circuits and with longitudinal cut-wire have been identified applying measurements in waveguides, cutoff waveguides and free space. To tune and mark resonance split cut-wires are loaded with varactor diodes
Nanostratification of optical excitation in self-interacting 1D arrays
The major assumption of the Lorentz-Lorenz theory about uniformity of local
fields and atomic polarization in dense material does not hold in finite groups
of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev.
Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength
scale, where the system may exhibit strong stratification of local field and
dipole polarization, with the strata period being much shorter than the
incident wavelength. In this paper, we further develop and advance that theory
for the most fundamental case of one-dimensional arrays, and study nanoscale
excitation of so called "locsitons" and their standing waves (strata) that
result in size-related resonances and related large field enhancement in finite
arrays of atoms. The locsitons may have a whole spectrum of spatial
frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic
domains, -- to super-short waves, with neighboring atoms alternating their
polarizations, which are reminiscent of antiferromagnetic spin patterns. Of
great interest is the new kind of "hybrid" modes of excitation, greatly
departing from any magnetic analogies. We also study differences between
Ising-like near-neighbor approximation and the case where each atom interacts
with all other atoms in the array. We find an infinite number of "exponential
eigenmodes" in the lossless system in the latter case. At certain "magic"
numbers of atoms in the array, the system may exhibit self-induced (but linear
in the field) cancellation of resonant local-field suppression. We also studied
nonlinear modes of locsitons and found optical bistability and hysteresis in an
infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a
typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection
Soliton absorption spectroscopy
We analyze optical soliton propagation in the presence of weak absorption
lines with much narrower linewidths as compared to the soliton spectrum width
using the novel perturbation analysis technique based on an integral
representation in the spectral domain. The stable soliton acquires spectral
modulation that follows the associated index of refraction of the absorber. The
model can be applied to ordinary soliton propagation and to an absorber inside
a passively modelocked laser. In the latter case, a comparison with water vapor
absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with
experiment. Compared to the conventional absorption measurement in a cell of
the same length, the signal is increased by an order of magnitude. The obtained
analytical expressions allow further improving of the sensitivity and
spectroscopic accuracy making the soliton absorption spectroscopy a promising
novel measurement technique.Comment: 9 pages, 7 figures
Scattering of slow-light gap solitons with charges in a two-level medium
The Maxwell-Bloch system describes a quantum two-level medium interacting
with a classical electromagnetic field by mediation of the the population
density. This population density variation is a purely quantum effect which is
actually at the very origin of nonlinearity. The resulting nonlinear coupling
possesses particularly interesting consequences at the resonance (when the
frequency of the excitation is close to the transition frequency of the
two-level medium) as e.g. slow-light gap solitons that result from the
nonlinear instability of the evanescent wave at the boundary. As nonlinearity
couples the different polarizations of the electromagnetic field, the
slow-light gap soliton is shown to experience effective scattering whith
charges in the medium, allowing it for instance to be trapped or reflected.
This scattering process is understood qualitatively as being governed by a
nonlinear Schroedinger model in an external potential related to the charges
(the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo
Enhancement of absorption bistability by trapping light planar metamaterial
We propose to achieve a strong bistable response of a thin layer of a
saturable absorption medium by involving a planar metamaterial specially
designed to bear a high-Q trapped-mode resonance in the infrared region.Comment: 11 pages, 4 figure
- …