4,514 research outputs found
DevA, a GntR-like transcriptional regulator required for development in streptomyces coelicolor
The gram-positive filamentous bacterium Streptomyces coelicolor has a complex developmental cycle with three distinct phases: growth of the substrate mycelium, development of reproductive structures called aerial hyphae, and differentiation of these aerial filaments into long chains of exospores. During a transposon mutagenesis screen, we identified a novel gene (devA) required for proper development. The devA mutant produced only rare aerial hyphae, and those that were produced developed aberrant spore chains that were much shorter than wild-type chains and had misplaced septa. devA encodes a member of the GntR superfamily, a class of transcriptional regulators that typically respond to metabolite effector molecules. devA forms an operon with the downstream gene devB, which encodes a putative hydrolase that is also required for aerial mycelium formation on R5 medium. S1 nuclease protection analysis showed that transcription from the single devA promoter was temporally associated with vegetative growth, and enhanced green fluorescent protein transcriptional fusions showed that transcription was spatially confined to the substrate hyphae in the wild type. In contrast, devAB transcript levels were dramatically upregulated in a devA mutant and the devA promoter was also active in aerial hyphae and spores in this background, suggesting that DevA might negatively regulate its own production. This suggestion was confirmed by gel mobility shift assays that showed that DevA binds its own promoter region in vitro
Wipes, Coatings, and Patches for Detecting Hydrazines
Three color-indicating devices have been conceived as simple, rapid, inexpensive means of detecting hazardous liquid and gaseous substances in settings in which safety is of paramount concern and it would be too time-consuming or otherwise impractical to perform detection by use of such instruments as mass spectrometers. More specifically, these devices are designed for detecting hypergolic fuels (in particular, hydrazines) and hypergolic oxidizers in spacecraft settings, where occasional leakage of these substances in liquid or vapor form occurs and it is imperative to take early corrective action to minimize adverse health effects. With suitable redesign, including reformulation of their color indicator chemicals, these devices could be adapted to detection of other hazardous substances in terrestrial settings (e.g., industrial and military ones). One of the devices is a pad of a commercially available absorbent material doped with a color indicator. The absorbent material is made from 70 percent polyester and 30 percent nylon and can absorb about eight times its own weight of liquid. The color indicator is a mixture of conventional pH color indicator chemicals. Hydrazine and monomethyl hydrazine, which are basic, cause the color indicator to turn green. In the original intended application, the pad is wiped on a space suit that is suspected of having been exposed to leaking monomethyl hydrazine during a space walk, before the wearer returns to the interior of the spacecraft. If the wiped surface is contaminated with hydrazine, the pad turns green. In addition, the pad absorbs hydrazine from the wiped surface, thereby reducing or eliminating the hazard. Used pads, including ones that show contamination by hydrazine, can be stored in a sealed plastic bag for subsequent disposal. The second device, which has been proposed but not yet developed, would comprise a color indicator material in the form of either a coating on a space suit (or other protective garment) or a coating on a sheet that could be easily attached to and detached from the protective garment. The coating material would be a hydrogel doped with a suitable pH indicator. The hydrogel would also serve to maintain a level of moisture needed to support the chemical reaction mentioned in the next sentence. In addition to changing color to indicate the presence of any hypergolic fuel (which is basic) or hypergolic oxidizer (which is acidic) that might splash on the space suit, the pH indicator would also react with the hypergolic fuel or oxidizer and thereby bind it. The third device is a color dosimeter for detecting hydrazine liquid or vapor coming from microscopic leaks. This device is designed to satisfy several requirements specific to its original intended use in the auxiliary power unit of the space shuttle. These requirements include stability under vacuum, stability at moderate temperature, fast and irreversible change in color upon exposure to hydrazine, and visibility of the color change through polyimide tape
Interaction of the Streptomyces Wbl protein WhiD with the principal sigma factor σHrdB depends on the WhiD [4Fe-4S] cluster
The bacterial protein WhiD belongs to the Wbl family of iron–sulfur [Fe-S] proteins present only in the actinomycetes. In Streptomyces coelicolor, it is required for the late stages of sporulation, but precisely how it functions is unknown. Here, we report results from in vitro and in vivo experiments with WhiD from Streptomyces venezuelae (SvWhiD), which differs from S. coelicolor WhiD (ScWhiD) only at the C terminus. We observed that, like ScWhiD and other Wbl proteins, SvWhiD binds a [4Fe-4S] cluster that is moderately sensitive to O2 and highly sensitive to nitric oxide (NO). However, although all previous studies have reported that Wbl proteins are monomers, we found that SvWhiD exists in a monomer–dimer equilibrium associated with its unusual C-terminal extension. Several Wbl proteins of Mycobacterium tuberculosis are known to interact with its principal sigma factor SigA. Using bacterial two-hybrid, gel filtration, and MS analyses, we demonstrate that SvWhiD interacts with domain 4 of the principal sigma factor of Streptomyces, σHrdB (σHrdB4). Using MS, we determined the dissociation constant (Kd) for the SvWhiD–σHrdB4 complex as ~0.7 μM, consistent with a relatively tight binding interaction. We found that complex formation was cluster dependent and that a reaction with NO, which was complete at 8–10 NO molecules per cluster, resulted in dissociation into the separate proteins. The SvWhiD [4Fe-4S] cluster was significantly less sensitive to reaction with O2 and NO when SvWhiD was bound to σHrdB4, consistent with protection of the cluster in the complex
Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor
- …
