40 research outputs found

    Nanolitre real-time PCR detection of bacterial, parasitic, and viral agents from patients with diarrhoea in Nunavut, Canada

    Get PDF
    Background. Little is known about the microbiology of diarrhoeal disease in Canada's Arctic regions. There are a number of limitations of conventional microbiology testing techniques for diarrhoeal pathogens, and these may be further compromised in the Arctic, given the often long distances for specimen transport. Objective. To develop a novel multiple-target nanolitre real-time reverse transcriptase (RT)-PCR platform to simultaneously test diarrhoeal specimens collected from residents of the Qikiqtani (Baffin Island) Region of Nunavut, Canada, for a wide range of bacterial, parasitic and viral agents. Study design/methods. Diarrhoeal stool samples submitted for bacterial culture to Qikiqtani General Hospital in Nunavut over an 18-month period were tested with a multiple-target nanolitre real-time PCR panel for major diarrhoeal pathogens including 8 bacterial, 6 viral and 2 parasitic targets. Results. Among 86 stool specimens tested by PCR, a total of 50 pathogens were detected with 1 or more pathogens found in 40 (46.5%) stool specimens. The organisms detected comprised 17 Cryptosporidium spp., 5 Clostridium difficile with toxin B, 6 Campylobacter spp., 6 Salmonella spp., 4 astroviruses, 3 noroviruses, 1 rotavirus, 1 Shigella spp. and 1 Giardia spp. The frequency of detection by PCR and bacterial culture was similar for Salmonella spp., but discrepant for Campylobacter spp., as Campylobacter was detected by culture from only 1/86 specimens. Similarly, Cryptosporidium spp. was detected in multiple samples by PCR but was not detected by microscopy or enzyme immunoassay. Conclusions. Cryptosporidium spp., Campylobacter spp. and Clostridium difficile may be relatively common but possibly under-recognised pathogens in this region. Further study is needed to determine the regional epidemiology and clinical significance of these organisms. This method appears to be a useful tool for gastrointestinal pathogen research and may also be helpful for clinical diagnostics and outbreak investigation in remote regions where the yield of routine testing may be compromised

    Critical Review of Norovirus Surrogates in Food Safety Research: Rationale for Considering Volunteer Studies

    Get PDF
    The inability to propagate human norovirus (NoV) or to clearly differentiate infectious from noninfectious virus particles has led to the use of surrogate viruses, like feline calicivirus (FCV) and murine norovirus-1 (MNV), which are propagatable in cell culture. The use of surrogates is predicated on the assumption that they generally mimic the viruses they represent; however, studies are proving this concept invalid. In direct comparisons between FCV and MNV, their susceptibility to temperatures, environmental and food processing conditions, and disinfectants are dramatically different. Differences have also been noted between the inactivation of NoV and its surrogates, thus questioning the validity of surrogates. Considerable research funding is provided globally each year to conduct surrogate studies on NoVs; however, there is little demonstrated benefit derived from these studies in regard to the development of virus inactivation techniques or food processing strategies. Human challenge studies are needed to determine which processing techniques are effective in reducing NoVs in foods. A major obstacle to clinical trials on NoVs is the perception that such trials are too costly and risky, but in reality, there is far more cost and risk in allowing millions of unsuspecting consumers to contract NoV illness each year, when practical interventions are only a few volunteer studies away. A number of clinical trials have been conducted, providing important insights into NoV inactivation. A shift in research priorities from surrogate research to volunteer studies is essential if we are to identify realistic, practical, and scientifically valid processing approaches to improve food safety

    Procedure for Rapid Concentration and Detection of Enteric Viruses from Berries and Vegetables

    No full text
    Several hepatitis A virus (HAV) and norovirus (NV) outbreaks due to consumption of berries and vegetables have been reported during recent years. To facilitate the detection of enteric viruses that may be present on different fresh and frozen products, we developed a rapid and sensitive detection method for HAV, NV, and rotavirus (RV). Initial experiments focused on optimizing the composition of the elution buffer, improving the viral concentration method, and evaluating the performance of various extraction kits. Viruses were extracted from the food surface by a direct elution method in a glycine-Tris (pH 9.5) buffer containing 1% beef extract and concentrated by ultrafiltration. Occasionally, PCR inhibitors were present in the processed berry samples, which gave relatively poor detection limits. However, this problem was overcome by adding a pectinase treatment in the protocol, which markedly improved the sensitivity of the method. After optimization, this concentration method was applied in combination with real-time reverse transcription-PCR (RT-PCR) using specific primers in various types of berries and vegetables. The average detection limits were 1 50% tissue culture infective dose (TCID(50)), 54 RT-PCR units, and 0.02 TCID(50) per 15 g of food for HAV, NV, and RV, respectively. Based on our results, it is concluded that this procedure is suitable to detect and quantify enteric viruses within 6 h and can be applied for surveillance of enteric viruses in fresh and frozen products

    Effiziente Detektion und Differenzierung von Norovirus-RNA

    No full text

    Validation of EN ISO method 15216-Part 1-Quantification of hepatitis A virus and norovirus in food matrices

    No full text
    Hepatitis A virus (HAV) and norovirus are important agents of food-borne human viral illness, with common vehicles including bivalve molluscan shellfish, soft fruit and various vegetables. Outbreaks of viral illness due to contamination of the surfaces of foods, or food preparation surfaces by for example infected food handlers are also common. Virus analysis of food matrices can contribute towards risk management for these hazards and a two-part technical specification for determination of Hepatitis A virus and norovirus in food matrices (ISO/TS 15216:2013) was published jointly by the European Committee for Standardisation and the International Organization for Standardization in 2013. As part of the European Mandate No. M381 to validate 15 standards in the field of food microbiology, an international validation study involving 18 laboratories from 11 countries in Europe was conducted between 2012 and 2014. This study aimed to generate method characteristics including limit of detection, limit of quantification, repeatability and reproducibility for ISO 15216 - Part 1, the method for quantification, in seven food matrices. The organization and results of this study, including observations that led to improvements in the standard method are presented here. After its conclusion, the method characteristics generated were added to the revised international standard, ISO 15216-1:2017, published in March 2017

    Validation of ISO method 15216 part 1 - Quantification of hepatitis A virus and norovirus in food matrices.

    No full text
    Hepatitis A virus (HAV) and norovirus are important agents of food-borne human viral illness, with common vehicles including bivalve molluscan shellfish, soft fruit and various vegetables. Outbreaks of viral illness due to contamination of the surfaces of foods, or food preparation surfaces by for example infected food handlers are also common. Virus analysis of food matrices can contribute towards risk management for these hazards and a two-part technical specification for determination of Hepatitis A virus and norovirus in food matrices (ISO/TS 15216:2013) was published jointly by the European Committee for Standardisation and the International Organization for Standardization in 2013. As part of the European Mandate No. M381 to validate 15 standards in the field of food microbiology, an international validation study involving 18 laboratories from 11 countries in Europe was conducted between 2012 and 2014. This study aimed to generate method characteristics including limit of detection, limit of quantification, repeatability and reproducibility for ISO 15216 - Part 1, the method for quantification, in seven food matrices. The organization and results of this study, including observations that led to improvements in the standard method are presented here. After its conclusion, the method characteristics generated were added to the revised international standard, ISO 15216-1:2017, published in March 2017
    corecore