67 research outputs found

    The evolution of postpollination reproductive isolation in Costus

    Get PDF
    Reproductive isolation is critical to the diversification of species. Postpollination barriers may be important in limiting gene flow between closely related species, but they are relatively cryptic and their evolution is poorly understood. Here, we review the role of postpollination reproductive isolation in plants, including the various stages at which it operates and the hypotheses for how it may evolve. We then review empirical studies in the plant genus Costus, evaluating documented postpollination barriers in light of these hypotheses. We summarize isolation due to parental style length differences and present evidence supporting the hypothesis that the differences are in part a by-product of selection on floral morphology. Additionally, we show that reduced pollen adhesion, germination, and tube growth contribute to reproductive isolation between two closely related sympatric species of Costus. Geographic variation in the strength of these crossing barriers supports the hypothesis that they evolved under reinforcement, or direct natural selection to strengthen isolation

    Frequency-dependent selection predicts patterns of radiations and biodiversity

    Get PDF
    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking niche-filling processes, whereas constant rates have been attributed to non-adaptive processes such as sexual selection, mutation, and dispersal. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the speciation rate is driven by frequency dependent selection. We used a frequency-dependent and DNA sequence-based model of populations and genetic-distance-based speciation, in the absence of adaptation to ecological niches. We tested the frequency-dependent selection mechanism using cichlid fish and Darwin's finches, two classic model systems for which speciation rates and richness data exist. Using negative frequency dependent selection, our model both predicts the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, the speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity are driven by larger incipient species abundance (and consequent lower extinction rates) with frequency-dependent selection. These results demonstrate that mutations, genetic-distance-based speciation, sexual and frequency-dependent selection are sufficient not only for promoting rapid proliferation of new species, but also for maintaining the high diversity observed in natural systems

    Radiating on Oceanic Islands: Patterns and Processes of Speciation in the Land Snail Genus Theba (Risso 1826)

    Get PDF
    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Visual mate preference evolution during butterfly speciation is linked to neural processing genes

    Get PDF
    Abstract: Many animal species remain separate not because their individuals fail to produce viable hybrids but because they “choose” not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment
    corecore