1,422 research outputs found

    The off-Shell Electromagnetic Vertex of the Nucleon in Chiral Perturbation Theory

    Full text link
    We study the electromagnetic vertex of a nucleon in next-to-leading order chiral perturbation theory (CPT). We consider the case where one of the nucleons at the γ\gammaNN vertex is off its mass shell. We define relevant measures for the off-shell dependence in the limited kinematical range allowed, and analyze their expansion in the pion mass. The leading nonanalytic contributions are calculated to estimate their size.Comment: 12 pages (LaTeX), 1 figure (available upon request), NIKHEF 93-P

    Quasi-Local Density Functional Theory and its Application within Extended Thomas-Fermi Approximation

    Get PDF
    A generalization of the Density Functional Theory is proposed. The theory developed leads to single-particle equations of motion with a quasi-local mean-field operator, which contains a quasi-particle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the Extended Thomas-Fermi approximation. Within the framework of this approach the ground-state properties of the doubly magic nuclei are considered. The calculations have been performed using the finite-range Gogny D1S force. The results are compared with the exact Hartree-Fock calculations

    Constraints on Neutrino Parameters from Neutral-Current Solar Neutrino Measurements

    Full text link
    We generalize the pull approach to define the χ2\chi^2 function to the analysis of the data with correlated statistical errors. We apply this method to the analysis of the Sudbury Neutrino Collaboration data obtained in the salt-phase. In the global analysis of all the solar neutrino and KamLAND data we find the best fit (minimum χ2\chi^2) values of neutrino parameters to be tan2θ120.42\tan^2 \theta_{12} \sim 0.42 and δm1227.1×105\delta m_{12}^2 \sim 7.1 \times 10^{-5} eV2^2. We confirm that the maximal mixing is strongly disfavored while the bounds on δm122\delta m_{12}^2 are significantly strengthened.Comment: 6 figures. Some typos are corrected, figures are visually improve

    Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order

    Get PDF
    We study the four channels associated with neutrino-deuteron breakup reactions at next-to-next to leading order in effective field theory. We find that the total cross-section is indeed converging for neutrino energies up to 20 MeV, and thus our calculations can provide constraints on theoretical uncertainties for the Sudbury Neutrino Observatory. We stress the importance of a direct experimental measurement to high precision in at least one channel, in order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps

    Food activities and identity maintenance in old age: a systematic review and meta-synthesis

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Objectives: Services provided to older people should be developed based on active ageing policies. Nutrition is one aspect of active ageing, but little is known about how food activities contribute to psychological well-being in later life. This is a systematic review of qualitative and quantitative research that answers the question ‘What is known about the relationship between food activities and the maintenance of identities in old age?’

    Effective theory of the Delta(1232) in Compton scattering off the nucleon

    Full text link
    We formulate a new power-counting scheme for a chiral effective field theory of nucleons, pions, and Deltas. This extends chiral perturbation theory into the Delta-resonance region. We calculate nucleon Compton scattering up to next-to-leading order in this theory. The resultant description of existing γ\gammap cross section data is very good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent polarizabilities αp\alpha_p and βp\beta_p.Comment: 29 pp, 9 figs. Minor revisions. To be published in PR

    Proton-proton fusion in pionless effective theory

    Full text link
    The proton-proton fusion reaction, ppde+νpp\to de^+\nu, is studied in pionless effective field theory (EFT) with di-baryon fields up to next-to leading order. With the aid of the di-baryon fields, the effective range corrections are naturally resummed up to the infinite order and thus the calculation is greatly simplified. Furthermore, the low-energy constant which appears in the axial-current-di-baryon-di-baryon contact vertex is fixed through the ratio of two- and one-body matrix elements which reproduces the tritium lifetime very precisely. As a result we can perform a parameter free calculation for the process. We compare our numerical result with those from the accurate potential model and previous pionless EFT calculations, and find a good agreement within the accuracy better than 1%.Comment: 14 pages, 5 eps figure

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure
    corecore