28,056 research outputs found

    Mn L2,3_{2,3} edge resonant x-ray scattering in manganites: Influence of the magnetic state

    Full text link
    We present an analysis of the dependence of the resonant orbital order and magnetic scattering spectra on the spin configuration. We consider an arbitrary spin direction with respect to the local crystal field axis, thus lowering significantly the local symmetry. To evaluate the atomic scattering in this case, we generalized the Hannon-Trammel formula and implemented it inside the framework of atomic multiplet calculations in a crystal field. For an illustration, we calculate the magnetic and orbital scattering in the CE phase of \lsmo in the cases when the spins are aligned with the crystal lattice vector a⃗{\vec a} (or equivalently b⃗{\vec b}) and when they are rotated in the abab-plane by 45∘^{\circ} with respect to this axis. Magnetic spectra differ for the two cases. For the orbital scattering, we show that for the former configuration there is a non negligible σ→σ′\sigma \to \sigma' (π→π′\pi \to \pi') scattering component, which vanishes in the 45∘^\circ case, while the σ→π′\sigma \to \pi' (π→σ′\pi \to \sigma') components are similar in the two cases. From the consideration of two 90∘^\circ spin canted structures, we conclude there is a significant dependence of the orbital scattering spectra on the spin arrangement. Recent experiments detected a sudden decrease of the orbital scattering intensity upon increasing the temperature above the N\' eel temperature in \lsmo. We discuss this behavior considering the effect of different types of misorientations of the spins on the orbital scattering spectrum.Comment: 8 figures. In the revised version, we added a note, a reference, and a few minor changes in Figure 1 and the text. Accepted in Physical Review

    Quenched Chiral Perturbation Theory for Baryons

    Full text link
    We develop quenched chiral perturbation theory for baryons using the graded-symmetry formalism of Bernard and Golterman and calculate non-analytic contributions to the baryon masses coming from quenched chiral loops. The usual term proportional to mq3/2m_{q}^{3/2} is substantially altered due to the cancellation of diagrams with internal quark loops. In addition, the η′\eta' ``hairpin'' vertex leads to a new correction, proportional to mq1/2m_{q}^{1/2}. We compare our results to numerical lattice data and use them to estimate the size of the quenching error in the octet baryon masses.Comment: 7 pages (An abridged version of this note will appear in the proceedings of Lattice'93. Latex + 14 postscript files, bundled using uufiles. Needs psfig.) UW/PT-93-0

    Spectroscopic biomedical imaging with the Medipix2 detector

    Get PDF
    This study confirms that the Medipix2 x-ray detector enables spectroscopic bio-medical plain radiography. We show that the detector has the potential to provide new, useful information beyond the limited spectroscopic information of modern dual-energy computed tomography (CT) scanners. Full spectroscopic 3D-imaging is likely to be the next major technological advance in computed tomography, moving the modality towards molecular imaging applications. This paper focuses on the enabling technology which allows spectroscopic data collection and why this information is useful. In this preliminary study we acquired the first spectroscopic images of human tissue and other biological samples obtained using the Medipix2 detector. The images presented here include the clear resolution of the 1.4mm long distal phalanx of a 20-week-old miscarried foetus, showing clear energy-dependent variations. The opportunities for further research using the forthcoming Medipix3 detector are discussed and a prototype spectroscopic CT scanner (MARS, Medipix All Resolution System) is briefly describe

    The Mid-infrared Fine-structure Lines of Neon as an Indicator of Star For mation Rate in Galaxies

    Get PDF
    The fine-structure lines of singly ([Ne II] 12.8 micron) and doubly ([Ne III] 15.6 micron) ionized neon are among the most prominent features in the mid-infrared spectra of star-forming regions, and have the potential to be a powerful new indicator of the star formation rate in galaxies. Using a sample of star-forming galaxies with measurements of the fine-structure lines available from the literature, we show that the sum of the [Ne II] and [Ne III] luminosities obeys a tight, linear correlation with the total infrared luminosity, over 5 orders of magnitude in luminosity. We discuss the formation of the lines and their relation with the Lyman continuum luminosity. A simple calibration between star formation rate and the [Ne II]+[Ne III] luminosity is presented.Comment: To appear in ApJ. 8 page

    Testing common classical LTE and NLTE model atmosphere and line-formation codes for quantitative spectroscopy of early-type stars

    Full text link
    It is generally accepted that the atmospheres of cool/lukewarm stars of spectral types A and later are described well by LTE model atmospheres, while the O-type stars require a detailed treatment of NLTE effects. Here model atmosphere structures, spectral energy distributions and synthetic spectra computed with ATLAS9/SYNTHE and TLUSTY/SYNSPEC, and results from a hybrid method combining LTE atmospheres and NLTE line-formation with DETAIL/SURFACE are compared. Their ability to reproduce observations for effective temperatures between 15000 and 35000 K are verified. Strengths and weaknesses of the different approaches are identified. Recommendations are made as to how to improve the models in order to derive unbiased stellar parameters and chemical abundances in future applications, with special emphasis on Gaia science.Comment: 12 pages, 8 figures; accepted for publication in Journal of Physics: Conference Series, GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Er

    Myth of Competition in the Dual Banking System

    Get PDF
    The American banking system operates under a dual state and federal system of chartering and safety and soundness regulation. The dual banking system ostensibly allows banks operating in any state to choose between two different sets of primary laws to define their powers and to regulate their activities and investments. Banks may obtain a national charter and fall under the regulatory aegis of the Comptroller of the Currency, or they may obtain a state charter from the chartering state\u27s primary banking regulator and fall under its regulatory aegis. In addition, within this system state banks can further decide whether to subject themselves to federal regulation by becoming members of the Federal Reserve System (Fed) or by insuring deposits through the Federal Deposit Insurance Corporation (FDIC)
    • …
    corecore