380 research outputs found

    CONTRALATERAL SUPPRESSION OF DISTORTION PRODUCT OTOACOUSTIC EMISSIONS IN CHILDREN WITH AND WITHOUT AUDITORY PROCESSING DISORDERS

    Get PDF
    This manuscript provides data on contralateral suppression of distortion product otoacoustic emissions in normal hearing children and children with Auditory Processing Disorders. Listeners included children 8 to 13 years-old. DPOAEs were elicited at three test frequencies around a narrow test ratio of f2/fi = 1.1 along with the traditional f2/fi = 1.22. Results suggest a frequency effect with suppression decreasing as f2 frequency increased, and a ratio effect with greater suppression at the narrow ratio. Additionally, no significant differences existed between normal children and previously obtained adult norms for measures of maximum suppression, mean suppression and maximum/mean suppression ratio. The APD grbup however, showed greater variance in these measures than normal children, reaching significance for maximum suppression at f2 = 3 kHz and f2/fi = 1.22. The large variance of the APD population may be of clinical interest pending a better understanding of the deficits underlying the disorder

    Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration

    Get PDF
    The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues.Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes als

    Sequencing the cortical processing of pitch-evoking stimuli using EEG analysis and source estimation

    Get PDF
    Cues to pitch include spectral cues that arise from tonotopic organization and temporal cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common pitch center is located just beyond primary auditory cortex along the lateral aspect of Heschl\u27s gyrus, but little work has examined the stages of processing for the integration of pitch cues. Using electroencephalography, we recorded cortical responses to high-pass filtered iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ in temporal and spectral content. The two stimulus types were matched for pitch saliency, and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary and secondary auditory areas, respectively, and to result from simple feature extraction. MMN is generated in secondary auditory cortex and is thought to act on feature-integrated auditory objects. We found that peak latencies of both P1 and N1 occur later in response to IRN stimuli than to complex harmonic stimuli, but found no latency differences between stimulus types for MMN. The location of each ERP component was estimated based on iterative fitting of regional sources in the auditory cortices. The sources of both the P1 and N1 components elicited by IRN stimuli were located dorsal to those elicited by complex harmonic stimuli, whereas no differences were observed for MMN sources across stimuli. Furthermore, the MMN component was located between the P1 and N1 components, consistent with fMRI studies indicating a common pitch region in lateral Heschl\u27s gyrus. These results suggest that while the spectral and temporal processing of different pitchevoking stimuli involves different cortical areas during early processing, by the time the object-related MMN response is formed, these cues have been integrated into a common representation of pitch. © 12 Butler and Trainor

    Sequencing the Cortical Processing of Pitch-Evoking Stimuli using EEG Analysis and Source Estimation

    Get PDF
    Cues to pitch include spectral cues that arise from tonotopic organization and temporal cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common pitch center is located just beyond primary auditory cortex along the lateral aspect of Heschl’s gyrus, but little work has examined the stages of processing for the integration of pitch cues. Using electroencephalography, we recorded cortical responses to high-pass filtered iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ in temporal and spectral content. The two stimulus types were matched for pitch saliency, and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary and secondary auditory areas, respectively, and to result from simple feature extraction. MMN is generated in secondary auditory cortex and is thought to act on feature-integrated auditory objects. We found that peak latencies of both P1 and N1 occur later in response to IRN stimuli than to complex harmonic stimuli, but found no latency differences between stimulus types for MMN. The location of each ERP component was estimated based on iterative fitting of regional sources in the auditory cortices. The sources of both the P1 and N1 components elicited by IRN stimuli were located dorsal to those elicited by complex harmonic stimuli, whereas no differences were observed for MMN sources across stimuli. Furthermore, the MMN component was located between the P1 and N1 components, consistent with fMRI studies indicating a common pitch region in lateral Heschl’s gyrus. These results suggest that while the spectral and temporal processing of different pitch-evoking stimuli involves different cortical areas during early processing, by the time the object-related MMN response is formed, these cues have been integrated into a common representation of pitch

    Modified Origins of Cortical Projections to the Superior Colliculus in the Deaf: Dispersion of Auditory Efferents.

    Get PDF
    Following the loss of a sensory modality, such as deafness or blindness, crossmodal plasticity is commonly identified in regions of the cerebrum that normally process the deprived modality. It has been hypothesized that significant changes in the patterns of cortical afferent and efferent projections may underlie these functional crossmodal changes. However, studies of thalamocortical and corticocortical connections have refuted this hypothesis, instead revealing a profound resilience of cortical afferent projections following deafness and blindness. This report is the first study of cortical outputs following sensory deprivation, characterizing cortical projections to the superior colliculus in mature cats

    High-Field Functional Imaging of Pitch Processing in Auditory Cortex of the Cat.

    Get PDF
    The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential pitch centres in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI) of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN) stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo). Pitch-related activity was not observed to occur in either primary auditory cortex (A1) or the anterior auditory field (AAF) which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF). This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception

    Origins of thalamic and cortical projections to the posterior auditory field in congenitally deaf cats.

    Get PDF
    Crossmodal plasticity takes place following sensory loss, such that areas that normally process the missing modality are reorganized to provide compensatory function in the remaining sensory systems. For example, congenitally deaf cats outperform normal hearing animals on localization of visual stimuli presented in the periphery, and this advantage has been shown to be mediated by the posterior auditory field (PAF). In order to determine the nature of the anatomical differences that underlie this phenomenon, we injected a retrograde tracer into PAF of congenitally deaf animals and quantified the thalamic and cortical projections to this field. The pattern of projections from areas throughout the brain was determined to be qualitatively similar to that previously demonstrated in normal hearing animals, but with twice as many projections arising from non-auditory cortical areas. In addition, small ectopic projections were observed from a number of fields in visual cortex, including areas 19, 20a, 20b, and 21b, and area 7 of parietal cortex. These areas did not show projections to PAF in cats deafened ototoxically near the onset of hearing, and provide a possible mechanism for crossmodal reorganization of PAF. These, along with the possible contributions of other mechanisms, are considered

    Developing a mechanistic understanding of crossmodal reorganization following sensory loss

    Get PDF
    Our long-term goal is to understand how plasticity reshapes circuits in the brain in response to atypical early experiences. This will allow us to better understand how the Deaf brain processes the world around us, and will make clear the challenges that must be overcome to optimize the function of cochlear implants and prostheses designed to restore sensory functions more broadly.https://ir.lib.uwo.ca/brainscanprojectsummaries/1039/thumbnail.jp

    The relationship between multisensory associative learning and multisensory integration

    Get PDF
    Integrating sensory information from multiple modalities leads to more precise and efficient perception and behaviour. The process of determining which sensory information should be perceptually bound is reliant on both low-level stimulus features, as well as multisensory associations learned throughout development based on the statistics of our environment. Here, we explored the relationship between multisensory associative learning and multisensory integration using encephalography (EEG) and behavioural measures. Sixty-one participants completed a three-phase study. First, participants were exposed to novel audiovisual shape-tone pairings with frequent and infrequent stimulus pairings and completed a target detection task. EEG recordings of the mismatch negativity (MMN) and P3 were calculated as neural indices of multisensory associative learning. Next, the same learned stimulus pairs were presented in audiovisual as well as unisensory auditory and visual modalities while both early (\u3c100 ms) and late neural indices of multisensory integration were recorded. Finally, participants completed an analogous behavioural speeded-response task, with behavioural indices of multisensory gain calculated using the Race Model. Significant relationships were found in fronto-central and occipital areas between neural measures of associative learning and both early and late indices of multisensory integration in frontal and centro-parietal areas, respectively. Participants who showed stronger indices of associative learning also exhibited stronger indices of multisensory integration of the stimuli they learned to associate. Furthermore, a significant relationship was found between neural index of early multisensory integration and behavioural indices of multisensory gain. These results provide insight into the neural underpinnings of how higher-order processes such as associative learning guide multisensory integration

    Imaging visually-evoked cortical activity

    Get PDF
    This work will significantly inform our understanding of \u27neural plasticity\u27, the ability of the brain to respond and reorganize to environmental changes or following an injury or disorder. It is also our hope that the results of this program will inform the design of devices to restore hearing - it might enable tuning of those devices to restore sensory representations in the brain in a patient-specific manner. We believe this will significantly reduce the impact of cognitive disorders that arise as a result of abnormal perception both in children and in older adults.https://ir.lib.uwo.ca/brainscanprojectsummaries/1003/thumbnail.jp
    corecore