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Systems/Circuits

Modified Origins of Cortical Projections to the Superior
Colliculus in the Deaf: Dispersion of Auditory Efferents

X Blake E. Butler,1,2,3 X Julia K. Sunstrum,4 and X Stephen G. Lomber1,2,3,5

1Department of Psychology, 2Brain and Mind Institute, 3National Centre for Audiology, 4Psychology Undergraduate Program, and 5Department of
Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada

Following the loss of a sensory modality, such as deafness or blindness, crossmodal plasticity is commonly identified in regions of the
cerebrum that normally process the deprived modality. It has been hypothesized that significant changes in the patterns of cortical
afferent and efferent projections may underlie these functional crossmodal changes. However, studies of thalamocortical and cortico-
cortical connections have refuted this hypothesis, instead revealing a profound resilience of cortical afferent projections following
deafness and blindness. This report is the first study of cortical outputs following sensory deprivation, characterizing cortical projections
to the superior colliculus in mature cats (N � 5, 3 female) with perinatal-onset deafness. The superior colliculus was exposed to a
retrograde pathway tracer, and subsequently labeled cells throughout the cerebrum were identified and quantified. Overall, the percent-
age of cortical projections arising from auditory cortex was substantially increased, not decreased, in early-deaf cats compared with intact
animals. Furthermore, the distribution of labeled cortical neurons was no longer localized to a particular cortical subregion of auditory
cortex but dispersed across auditory cortical regions. Collectively, these results demonstrate that, although patterns of cortical afferents
are stable following perinatal deafness, the patterns of cortical efferents to the superior colliculus are highly mutable.

Key words: auditory cortex; deafness; efferent; multisensory; plasticity; superior colliculus

Introduction
The superior colliculus (SC) is a midbrain structure that plays a
central role in orienting toward environmental stimuli. Multi-
sensory in nature, the SC maintains coregistered representations
of visual and auditory space, and body surface (Stein, 1984). Im-
portantly, these representations are integrated such that stimuli
which are perceived by multiple sensory systems will initiate SC-

mediated orienting responses with a greater likelihood than if one
modality is stimulated in isolation (e.g., Stein et al., 1989). This
multisensory integration is dependent upon inputs from sensory
cortex, arising primarily from the anterior ectosylvian sulcus
(AES), a region where representations of vision (the anterior ec-
tosylvian visual area [AEV]) (Olson and Graybiel, 1987; Benedek
et al., 1988; Jiang et al., 1994), audition (the auditory field of the
anterior ectosylvian sulcus [fAES]) (Clarey and Irvine, 1986;
Meredith and Clemo, 1989), and somatosensation (the fourth
somatosensory cortex [S4]) (Clemo and Stein, 1982, 1983) exist
in close proximity. If cortical input from these regions is dis-
rupted, SC neurons remain responsive to sensory stimuli, as they
are in receipt of inputs from a broad array of sensory brain re-
gions in addition to those located along the AES; however, the
output of SC neurons reflects the strongest unisensory input
rather than a synergistic combination of multisensory inputs (Ji-
ang et al., 2001; Alvarado et al., 2009).
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Significance Statement

When a sense is lost, the remaining senses are functionally enhanced through compensatory crossmodal plasticity. In deafness,
brain regions that normally process sound contribute to enhanced visual and somatosensory perception. We demonstrate that
hearing loss alters connectivity between sensory cortex and the superior colliculus, a midbrain region that integrates sensory
representations to guide orientation behavior. Contrasting expectation, the proportion of projections from auditory cortex in-
creased in deaf animals compared with normal hearing, with a broad distribution across auditory fields. This is the first descrip-
tion of changes in cortical efferents following sensory loss and provides support for models predicting an inability to form a
coherent, multisensory percept of the environment following periods of abnormal development.
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Electrophysiological examinations of the response properties
of SC neurons have demonstrated that the development of mul-
tisensory integration is a slow process that depends upon postna-
tal experience with multisensory stimuli (Wallace and Stein,
2001; Stein, 2012; Xu et al., 2012). Although this allows for a
system optimally tuned to those stimuli encountered most fre-

Figure 1. Labeled neurons in the PLLS. Dashed lines indicate the boundaries between gray and
white matter (A) or between cortical layers (B). Black arrows indicate labeled neurons. To be consid-
ered a labeled neuron, the nucleus and the entirety of the somatic membrane had to be present. Red
arrows point to neurons that are too faintly labeled and were not included in the count. C, Detailed
view of a labeled neuron. Scale bar, 500 �m. DZ, Dorsal zone of auditory cortex.

Figure 2. Schematic representations of tracer spread across the coronal plane of the SC for
each animal in the present study, presented on a standardized SC. The tracer spread throughout
the superficial and deep layers of the SC. In some cases, tracer spread medially into the periaq-
ueductal gray (pag), but there was no evidence of spread into the contralateral SC or ipsilateral
pretectum in any case. Scale bar, 500 �m. ca, Anterior commissure; SAI, stratum album inter-
mediale; SAP, stratum album profundum; SGI, stratum griseum intermediale; SGP, stratum
griseum profundum; SGS, stratum griseum superficiale; SO, stratum opticum; SZ, stratum
zonale.

Table 1. Cases examined

Case no. Age at deafening Age of perfusion Duration of deafness

W245 15 d 6 mo, 17 d 6 mo, 2 d
W246 16 d 7 mo, 17 d 7 mo, 1 d
W264 18 d 5 yr, 2 mo 5 yr, 1.4 mo
W270 10 d 2 yr, 10 mo 2 yr, 9.6 mo
W272 11 d 2 yr, 11 mo 2 yr, 10.6 mo

Butler et al. • Corticotectal Projections in the Deaf Cat J. Neurosci., April 18, 2018 • 38(16):4048 – 4058 • 4049



quently in an individual’s environment, it
also leaves the system vulnerable to peri-
ods of impoverished input. A number of
studies have sought to address the func-
tional consequences of periods of abnor-
mal experience in which the pairing of
stimuli across sensory modalities does not
occur. For example, sensory integration
within the SC is disrupted in cats reared in
darkness, as the requisite auditory-visual
experience is precluded (Wallace et al.,
2004; Yu et al., 2010). Such periods of dark
rearing dramatically alter modulatory
corticotectal inputs arising from regions
along the banks of AES such that their
influence is reduced in specificity, and in-
sufficient to support multisensory inte-
gration (Yu et al., 2013). Similarly, SC
neurons of animals raised in the presence
of a broadband noise signal that masks en-
vironmental sounds (and thus precludes
multisensory perception) show altered re-
ceptive field properties and dramatically
reduced multisensory integration (Xu et
al., 2011). These studies suggest that early
periods of abnormal sensory development
dramatically disrupt the functional con-
nectivity between the cortex and SC.

A number of recent studies have ad-
dressed the hypothesis that changes in
anatomical connectivity give rise to func-
tional plasticity following hearing loss
in the cat. However, quantifications of
thalamocortical and corticocortical pro-
jections have revealed a striking similarity
between patterns of connectivity in nor-
mal hearing and deaf animals. For exam-
ple, no significant evidence of crossmodal
plasticity has been observed in cortical
projections to the primary auditory cortex
(Chabot et al., 2015), the posterior audi-
tory field (Butler et al., 2016a), the audi-
tory field of the anterior ectosylvian sulcus
(Meredith et al., 2016), or the second au-
ditory cortex (Butler et al., 2018). In other
brain regions including the dorsal zone of
auditory cortex (Kok et al., 2014) and the
anterior auditory field (Wong et al., 2015), only small changes in
the proportion of projections from visual and/or somatosensory
regions have been observed. However, to our knowledge, no
study has provided a comprehensive overview of how the under-
lying corticotectal connectivity is altered by sensory loss. Thus,
the present study examines corticotectal projections from across
the cat cortex following early-onset deafness, with a particular
focus on those regions known to contribute to multisensory in-
tegration and orienting behavior mediated by the SC.

Materials and Methods
Overview. Corticotectal projections were examined in 5 adult (�6
months, 2 male, 3 female) short-haired domestic cats that were otoxically
deafened perinatally. Cats were born in-house from pregnant queens
obtained from a USDA-licensed commercial animal breeding facility
(Liberty Laboratories) and were housed in enriched colony environ-

ments with free access to food and water. At least 6 months following
deafening, the retrograde tracer biotinylated dextran amine (BDA; 3000
MW [10%], Vector Laboratories) was deposited into the left SC. After a
2 week tracer transport period, cats were perfused and brain tissue was
processed for neuronal labeling (Table 1). All surgical and experimental
procedures were conducted in accordance with the National Research
Council’s Guidelines for the care and use of mammals in neuroscience and
behavioral research and the Canadian Council on Animal Care’s Guide to
the care and use of experimental animals and were approved by the Uni-
versity of Western Ontario Animal Use Subcommittee of the University
Council on Animal Care.

Ototoxic deafening. Cats were ototoxically deafened around the time of
hearing onset (�3 weeks postnatal) (Shipley et al., 1980). Auditory
brainstem responses were measured before and during the deafening
procedure to assess hearing thresholds. Subdermal EEG leads were
placed above the ears in a vertex to mastoid configuration. Auditory
stimuli (0 – 80 dB nHL, 0.1 ms squarewave clicks) were presented
through ER3A foam insert headphones (Etymotic Research). Animals

Figure 3. Photomicrographs of coronal sections through the SC of Case W245. A, Injection site. B, Cytochrome oxidase series
with layers of the SC indicated. The BDA tracer spread into all the layers of the SC, with minimal spread into the periaqueductal gray.
Scale bar, 500 �m. SZ, stratum zonale; SGS, stratum griseum superficiale; SO, stratum opticum; SGI, stratum griseum intermediale;
SAI, stratum album intermediale; SGP, stratum griseum profundum; SAP, stratum album profundum.
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Figure 4. Representative distribution of visual (purple), auditory (red), somatosensory (green), motor (blue), and limbic (yellow) corticotectal projections. The lateral schematic of the brain
(bottom right) shows the levels from which these coronal sections through the cortex were taken. Bottom left, Scale bar, 1 mm. A1, primary auditory cortex; A2, second auditory cortex; AAF, anterior
auditory field; CGA, anterior cingulate; CGP, posterior cingulate; CVA, cingulate visual area; DZ, dorsal zone of auditory cortex; EPp, posterior division of the posterior ectosylvian gyrus; IN, auditory
insular cortex; PS, posterior suprasylvian visual area; RS, retrosplenial area.

Table 2. Cortical field-level changes between normal hearing and early-deaf animalsa

Visual Auditory
Motor and

Somatosensory

7 17 18 19 20a ALLS AMLS PLLS PMLS A1 dPE fAES IN iPE vPE 5 S4

Normal hearing 1.51 36.42 5.68 7.61 1.34 2.61 1.93 12.56 7.54 0.28 0.06 4.60 0.25 0.33 0.98 0.52 0.42
Early-deaf 2.87 18.90 3.72 9.59 1.90 2.69 0.98 6.14 3.96 1.11 2.56 0.34 2.85 1.26 1.18 3.09 1.75
p 0.07 1.0 1.0 1.0 1.0 1.0 0.83 0.29 0.86 *0.039 0.19 *0.047 0.071 0.19 0.90 0.63 1.0
aFields comprising �1% of labelled cells in at least one population are presented and are grouped by modality: visual, auditory, motor, and somatosensory regions. ALLS, Anterolateral lateral suprasylvian area; AMLS, anteromedial lateral
suprasylvian area; A1, primary auditory cortex; dPE, dorsal posterior ectosylvian gyrus; IN, insular auditory cortex; iPE, intermediate posterior ectosylvian gyrus; vPE, ventral posterior ectosylvian gyrus.

*Significant differences (corrected p values, Mann–Whitney tests).
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were anesthetized by inhalation of oxygen (1 L/min) and isoflurane (5%
to effect for induction, 1.5%–2% to maintain), and an intravenous cath-
eter was inserted into the cephalic vein of the forelimb. Deafening was
induced by the coadministration of sodium Edecrin (to effect 35– 60
mg/kg, i.v.) and kanamycin (300 mg/kg, s.c.). This method is known to
selectively destroy hair cells in the cochlea and result in permanent, pro-
found hearing loss (Xu et al., 1993). Once auditory brainstem responses
were absent at 80 dB, infusion of sodium Edecrin was terminated and
replaced by lactated Ringer’s solution (4 ml/kg, i.v.). The catheter was
removed, and the animal was allowed to recover from anesthesia. A
second auditory brainstem response was recorded 3 months later to con-
firm that thresholds were elevated �80 dB.

Surgical procedures. Each cat was fasted and lightly anesthetized with
ketamine (4 mg/kg, i.m.) and Dexdomitor (0.020 mg/kg, i.m.) the after-
noon before surgery to insert an indwelling feline catheter into the
cephalic vein for the administration of intravenous medications. The
anti-inflammatory dexamethasone (0.5 mg/kg, i.v.) was then adminis-
tered. On the day of surgery, atropine (0.02 mg/kg, s.c.) was administered
to minimize alimentary and respiratory secretions, followed by dexa-
methasone (0.5 mg/kg, i.v.), and buprenorphine (0.01 mg/kg, s.c.).
General anesthesia was induced and maintained with sodium pento-
barbital (25 mg/kg i.v., to effect). To suppress the gag reflex and allow
for intubation, Cetacaine (Cetylite Laboratories) was sprayed onto
the pharyngeal walls. Neosporin (Kirkland), an ophthalmic ointment,
was applied to protect the cornea. The cat was stabilized in a stereo-
taxic frame (David Kopf Instruments), and its head was shaved and
prepared for surgery using aseptic procedures. Body temperature,
heart rate, respiration rate, and blood pressure were continuously
monitored. A water-filled heating pad (Gaymar) was used to maintain
a core temperature of 37°C.

A midline incision was made, and the left temporalis muscle was re-
flected laterally. A craniotomy (�2 cm 2) was made over the marginal,
posterolateral, and middle suprasylvian gyri of the left hemisphere. The
skull piece was stored in sterile saline for later replacement and the dura
was reflected laterally. Mannitol (25 mg/kg, i.v.) was infused to permit
lateral displacement of the hemisphere, and to aid in visualization of the
SC (Lomber et al., 2001). In addition, the posterior half of the splenium
of the corpus callosum was ablated by aspiration to allow for visualiza-
tion of the dorsal surface of the SC and to permit entrance of the injection
pipette.

Tracer deposits. BDA (3000 MW, [10%] Vector Laboratories) was in-
jected through a glass syringe (Hamilton) into the left SC. The tracer was
deposited in three locations across the SC (anterior medial, posterior
medial, and lateral injection sites) at two depths (1000 and 2000 �m) to
ensure both the deep and superficial SC layers were exposed. A volume of
0.3 �l was deposited at each depth in each of the three locations, for a
total injection volume of 1.8 �l. Following each deposit, the pipette re-
mained stationary for 5 min. Any leakage of BDA was removed by flush-
ing with sterile saline to prevent tracer contamination of surrounding
tissue. When all 6 injections were completed, the bone piece was replaced
and secured with dental acrylic and stainless-steel skull screws followed
by suturing of the incision with 3– 0 silk.

Postsurgical procedures. Following extubation and removal of the in-
dwelling catheter, half-strength lactated Ringer’s solution (20 ml/kg, s.c.)
was administered, as necessary, for 4 h. Respiration rate, blood pressure,
and heart rate were monitored until the animal was sternally recumbent.
Buprenorphine (0.01 mg/kg, s.c.) was administered every 6 h for the first
24 h, and every 12 hours for the next 48 h. For 6 d following surgery,
dexamethasone (0.05 mg/kg on day 1 and 2, decreasing by 0.01 mg/kg
each day thereafter, s.c.) was given every 24 h. In all cases, recovery was
uneventful.

Perfusion and tissue processing. Two weeks following BDA injections,
the cephalic vein was cannulated and the cat was deeply anesthetized
(sodium pentobarbital, 35 mg/kg, i.v.). An anticoagulant (heparin,
10,000 U; 1 ml) and a vasodilator (1% sodium nitrite, 1 ml) were admin-
istered intravenously, and the animal was perfused intracardially
through the ascending aorta. Physiological saline was perfused for 10
min, followed by aldehyde fixatives (4% PFA) for 20 min and 10% su-
crose for 20 min. All solutions were buffered to a pH of 7.4 with 0.1 M

Sorenson’s buffer and infused at a rate of 100 ml/min. The brain was
stereotaxically blocked (coronal plane at Horsley-Clarke level A25), re-
moved, and placed in 30% sucrose in 0.1 M Sorenson’s buffer to cryopro-
tect it for histological processing.

Once the brain sank, it was frozen and cut in 60 �m coronal sections
using a cryostat (CM 3050s; Leica Microsystems). Six series of sections at
360 �m intervals were collected, and four series were processed for one of
the following: (1) BDA using the avidin-biotin peroxidase method
(Veenman et al., 1992) (Covance Research Products); (2) monoclonal
antibody SMI-32 (Covance Research Products: RRID:AB_2315331); (3)
Nissl stain; and (4) cytochrome oxidase (Payne and Lomber, 1996). The
avidin-biotin peroxidase method was used to reveal the presence of labeled
neurons, whereas the SMI-32 series was used for examining cytoarchitecture
and defining cortical areal borders. Finally, the Nissl and cytochrome oxidase
series assisted with collicular subdivision and laminar distinctions. The re-
maining two series were retained as spares. Following staining, the tissue was
mounted onto gelatin-coated slides, air dried, and coverslipped.

Data analysis. A Nikon E600 microscope mounted with a DXM 1200
digital camera was used to visualize BDA-labeled neurons. Neurolucida
software (MicroBrightfield) was used to plot and quantify labeled cells,
and to trace the contours of sections and injection sites. To prevent the
inclusion of artifactual labeling, neurons were only considered labeled if
the entire somatic membrane was present and the nucleus was visible
(Fig. 1). Partial cell bodies or dendritic branches alone were not counted.
The focal level was adjusted throughout the z plane of each section to
ensure that the full thickness was examined.

For each animal, areal borders were delineated based on cytoarchitec-
tural differences, sulcal and gyral patterns, and previously described
SMI-32 and Nissl staining profiles. In the visual cortex, borders between
the posterior lateral suprasylvian (PLLS) and posteromedial lateral su-
prasylvian (PMLS) areas were placed on the lateral bank of the middle
suprasylvian sulcus, and borders between the dorsal and ventral lat-
eral suprasylvian areas were placed on the dorsal bank of the posterior
limb of the suprasylvian sulcus, which is supported by cytoarchitec-
tonic methods in the visual system (van der Gucht et al., 2001). In the
auditory cortex, areal borders were assigned based on previously pub-
lished criteria surrounding changes in the patterns of SM1–32 label-
ing (Mellott et al., 2010; Wong et al., 2014). Motor cortical fields were
delineated based primarily on Nissl staining profiles (Clascá et al.,
1997). Any labeled neurons lying along the transitional zone between
cortical fields were assigned equally to the two areas.

The raw number of labeled neurons in each cortical field was con-
verted to a proportion of the total number of labeled cells on an
individual animal basis to account for differences in tracer uptake and
histological processing. The median proportion of cells was then cal-
culated as a measure of group central tendency for each cortical field.
Finally, the number of cells in each modality (visual, auditory, so-
matosensory, motor, limbic) was determined.

Figure 5. Distribution of corticotectal projections by modality in the cortex for the animals
described in the current study (Deaf). Data from hearing animals, previously reported by Butler
et al. (2016b), are included for comparison.
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Experimental design and statistical analysis. Differences in modality-
level projections to the deaf SC were computed using a Kruskal–Wallis
test, with post hoc pairwise comparisons computed according to the Con-
over Method with a Holm familywise error rate correction applied. At the
individual field level, Bonferroni-corrected Mann–Whitney tests were
used to compare the data from the current study to previously reported
data from hearing animals (Butler et al., 2016b) for any field in which the
proportion of labeled cells exceeded a threshold of 1%. Because the
signed-rank procedure that comprises the Mann–Whitney test is not

robust to multiple ties, this thresholding
procedure effectively eliminated compari-
sons between cortical regions, which typi-
cally comprised 0% of labeled cells in more
than 1 animal.

Results
Tracer spread
Five cats received deposits of BDA that
spread throughout the superficial and
deep layers of the left SC. The injection
sizes are directly comparable with those
used previously to quantify projections in
hearing animals (Meredith and Clemo,
1989; Chabot et al., 2013; Butler et al.,
2016b). Tracer spread following injection
is illustrated for each animal on a normal-
ized coronal section for comparison (Fig.
2). In all cases, the tracer was exposed to
axon terminals in stratum griseum super-
ficiale, stratum griseum intermediale, and
stratum griseum profundum and covered
the majority of the SC (Fig. 3). There was
no evidence of spread into any portion of
the pretectal nuclei or the inferior collicu-
lus in any case. In some cases, there was
exposure of tracer to the lateral portions
of the periaqueductal gray. There was no
evidence of tracer spread to the contralat-
eral SC. Based on these results, no cases
were excluded from the data analysis.

Neuronal labeling patterns
We have previously published a similar
analysis of connectivity in normal hearing
animals (Butler et al., 2016b) that will
serve as a basis for comparison. Table 2
illustrates changes in the proportion of la-
beled cells between the two studies. It is
worth noting that tracer injections made
in both of these studies sought to quantify
projections to the entirety of the SC. This
includes both the superficial layers (stra-
tum zonale, stratum griseum superficiale,
stratum opticum), whose cortical inputs
arise almost entirely from visual cortical
areas (Kawamura et al., 1974; Baleydier et
al., 1983), and the deeper layers (stratum
griseum intermediale, stratum album in-
termediale, stratum griseum profundum,
stratum album profundum), whose in-
puts arise from regions across cortex, and
which have been shown to be the site of
multisensory integration in SC (Baleydier
et al., 1983; Wallace et al., 1993). While

this approach provides a comprehensive quantification of corti-
cotectal inputs, it also means that a greater proportion of inputs
were found to arise from visual cortical regions than if deep layers
had been targeted specifically. Thus, while the SC as a whole
receives 71% of its cortical projections from visual regions, the
same is not true of multisensory neurons of the SC. All cortical
neurons showing positive labeling were counted as described

Figure 6. Box-and-whisker plot illustrating the distribution of visual corticotectal projections by cortical area. y axis indicates
the percentage of labeled neurons and whiskers extend a maximum of 1.5 times the interquartile range. �, Outlier. The largest
connections from the visual cortex originate from the primary area 17 (median � 18.9%), area 19 (median � 9.6%), and PLLS
(median � 6.1%). Other visual areas involved in visual orienting behavior (18, PMLS) show weaker connections with the SC
(median of 3.7% and 4.0%, respectively). ALLS, anterolateral lateral suprasylvian area; AMLS, anteromedial lateral suprasylvian
area; PS, posterior suprasylvian visual area; EPP, posterior division of the posterior ectosylvian gyrus.

Figure 7. Box-and-whisker plot illustrating the distribution of auditory corticotectal projections by cortical area. y axis indicates
the percentage of labeled neurons and whiskers extend a maximum of 1.5 times the interquartile range. �, Outlier. Auditory
projections to the SC are diffuse, with each of the 13 regions comprising a small proportion of labeled cells (all �3%). A1, primary
auditory cortex; A2, second auditory cortex; AAF, anterior auditory field; dPE, dorsal posterior ectosylvian gyrus; DZ, dorsal zone
of auditory cortex; IN, auditory insular cortex; iPE, intermediate posterior ectosylvian gyrus; PAF, posterior auditory field; T,
temporal auditory cortex; VAF, ventral auditory field; VPAF, ventral posterior auditory field; vPE, ventral posterior ectosylvian
gyrus.
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above. In the cerebrum, the overwhelm-
ing number of labeled neurons were iden-
tified in the hemisphere ipsilateral to the
injection site (median � 96.3%), with
only a small number of labeled cells iden-
tified in the contralateral hemisphere
(median � 3.7%). Moreover, labeling was
most dense in the dorsal and lateral as-
pects of the cerebrum, with few labeled
cells in more ventral areas. Within the ip-
silateral cortex, neurons were located
throughout the marginal, posterolateral,
and suprasylvian gyri. The suprasylvian
and anterior ectosylvian sulci also con-
tained large numbers of labeled cells (a
representative plot of labeled cells in one
animal [W264] is presented in Fig. 4).
Likewise, the majority of labeled cells in
the contralateral hemisphere were con-
fined to the suprasylvian and ectosylvian
sulci.

On an individual animal basis, the la-
beled neurons in each cortical area are ex-
pressed as a percentage of the total
number of labeled cells in the entire cortex
to allow for meaningful comparisons be-
tween animals, and to previous work in
hearing animals (the raw number of cells
labeled was not different between groups
[hearing: median � 6211, deaf: median �
5633, W � 9 p � 0.55]). A Kruskal–Wallis
test revealed significant differences be-
tween projections to the SC at a modality
level (� 2

(4) � 20.35, p � 0.0004). As ex-
pected, the visual cortex (71.7%) con-
tained significantly more labeled cells that
any other modality following retrograde
injection into the SC (all p � 0.01), with
the input from auditory cortex (15.6%),
exceeding that of the somatosensory
(3.1%; p � 0.01), motor (3.1%; p � 0.01), and limbic cortices (7.6%;
p � 0.03; Fig. 5).

Labeling profile of individual cortical fields
Labeling of cells in the visual cortex was evident across the entire
visual field, from the most posterior to the most anterior portions
of visual cortex, representing the fovea and the visual periphery,
respectively (Tusa et al., 1981). The primary visual cortex (area
17) showed the highest proportion of neurons projecting to the
SC (median � 18.9%), followed by the remaining visual areas
that are known to be involved in visual orienting behaviors, in-
cluding areas 18 and 19, and the PLLS and PMLS areas (Fig. 6).
Substantial proportions of projections were also observed to arise
from the AEV (5.4%) and the posterior aspect of the posterior
ectosylvian gyrus (5.0%). Each of the remaining visual cortical
fields contained �3% of the total labeled cells.

Auditory cortical regions comprised 15.6% of the total num-
ber of labeled cells, with a small number of neurons observed in
each of the 13 auditory cortical regions. The largest proportions
of auditory projections were observed to arise from the insular
auditory cortex (2.9%) and the dorsal aspect of the posterior

ectosylvian gyrus (2.6%), with the remaining projections ranging
between 0.3% and 1.3% of the total number of labeled cells (Fig.
7). Critically, the current study reveals that the median propor-
tion of labeled cells in fAES is decreased by an order of magnitude
in early-deaf relative to normal hearing animals (0.3% vs 4.7%;
W � 25, corrected p � 0.047). Conversely, the proportions of
labeled cells in 11 of the 12 remaining fields of auditory cortex are
increased in the deaf; however, only in primary auditory cortex
did the increase reach statistical significance (W � 0, corrected
p � 0.039).

In somatosensory and motor cortices, labeled neurons were ob-
served in a small number of fields. The second (0.3%), medial sec-
ond (0.3%), fourth (1.8%), and fifth (0.1%) somatosensory areas
(Fig. 8) were each shown to contain a small proportion of labeled
cells. Although primary somatosensory cortex has been shown
to play a role in orienting behavior, we found no evidence of a
direct projection to the SC. Within the motor cortex, area 5
has been shown to be involved with generating orienting responses
and made the most substantial proportional projection to the SC
(3.1%); an additional, smaller input was also observed to originate
from area 4 (0.3%).

Figure 8. Box-and-whisker plot illustrating the distribution of somatosensory and motor corticotectal projections by cortical
area. y axis indicates the percentage of labeled neurons and whiskers extend a maximum of 1.5 times the interquartile range. �,
Outlier. The primary somatosensory area does not have a direct projection to the SC. S2, second somatosensory cortex; S2m, medial
division of the second somatosensory cortex; S4, fourth somatosensory cortex; S5, fifth somatosensory cortex.
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In limbic cortex, labeled cells were
identified within a number of areas (Fig.
9). The largest proportion of labeled cells
was located in the posterior cingulate
area (2.2%), followed by the retro-
splenial area (1.1%), and the cingulate
visual area (1.0%). All other areas con-
tained �1% of labeled cells.

A much smaller proportion of cells were
observed in the contralateral cortex compared
with the ipsilateral hemisphere (7.9% vs
92.1%). Within the contralateral hemisphere,
no cortical region accounted for �1% of the
total number of labeled cells. The largest pro-
portions of projections were observed to orig-
inate in the contralateral visual areas AEV and
PLLS (each 0.7%; Fig. 10).

Discussion
This comprehensive quantification of
cortical projections to the SC in early-deaf
cats comprises the first examination of re-
organized sensory cortical outputs follow-
ing hearing loss. As in hearing animals,
nearly all corticotectal projections in deaf
animals arise from layer V of regions ipsi-
lateral to SC injection (median � 99%).
However, stark contrasts exist between
groups in both modality-level and indi-
vidual field-level patterns of labeling.

Modality-level changes
Figure 5 compares modality-level patterns
of corticotectal projections in hearing
(Butler et al., 2016b) and deaf animals
(present study). Interestingly, deafness re-
sulted in a decreased proportion of la-
beled cells in visual cortex and increases in
all other modalities. Most strikingly, pro-
portions from limbic areas increased from
0.5% in hearing animals to 7.6% in the
deaf, which likely relates to the function of
these cortical efferents. Alvarado et al.
(2009) suggest that corticotectal modula-
tion of SC function confers integrative
flexibility, such that multisensory en-
hancement is sensitive to behavioral con-
text. This could be achieved within a
Bayesian framework whereby indepen-
dently weighted stimulus representations
are fused to generate optimal percepts.
This would involve weighting different
sensory representations to reflect their
relative reliability (e.g., Morgan et al.,
2008). However, if learned stimulus asso-
ciations are to be incorporated, top-down
cortical influence would be crucial. In
deafness, SC neurons receive no represen-
tation of the auditory world and may rely
upon stronger projections from limbic
cortices to provide behaviorally relevant
information to complement inputs from
the remaining senses. Accordingly, the

Figure 9. Box-and-whisker plot illustrating the distribution of limbic corticotectal projections by cortical area. y axis indicates
the percentage of labeled neurons and whiskers extend a maximum of 1.5 times the interquartile range. �, Outlier. The largest
limbic projection to the SC arises from the posterior cingulate (2.2%). AID, dorsal division of the agranular insular area; CGA,
anterior cingulate; CGP, posterior cingulate; CVA, cingulate visual area; MZ, multisensory zone; Psb pre- and parasubiculum; Rs,
retrosplenial area.

Figure 10. Box-and-whisker plot illustrating the distribution of contralateral corticotectal projections by cortical area. y axis
indicates the percentage of labeled neurons and whiskers extend a maximum of 1.5 times the interquartile range. �, Outlier. Each
of the contralateral cortical areas has a projection accounting for �1% of total labeled neurons.
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largest limbic input arose from the poste-
rior cingulate area, where activity reflects
the subjective salience of a stimulus, and
which guides visual orienting (McCoy
and Platt, 2005).

Changes in auditory
cortical projections
Studies of auditory cortical modulation
of SC neuron function have focused on
the fAES. Deactivating fAES selectively
abolishes multisensory integration in
SC neurons while preserving unisensory
responses (Jiang et al., 2001). Behavior-
ally, fAES deactivation induces significant
impairment in auditory localization in the
contralateral field (Malhotra et al., 2004;
Malhotra and Lomber, 2007), a response
that likely relies upon the output of these
same SC neurons. Accordingly, fAES
comprises the largest auditory cortical in-
put to the SC in hearing cats and is the
only field to make a substantial bilateral
input (Butler et al., 2016b). Interestingly,
the proportion of labeled cells in fAES is
dramatically reduced following hearing
loss, whereas proportions arising from
other auditory areas are strengthened
(Fig. 11). As a result, the total proportion
of inputs to the SC arising from auditory
cortex is slightly larger (15.6% deaf vs
12.4% hearing), but less discriminate in
the deaf brain. A dramatic decrease in the
proportion of labeled cells in fAES was
also observed in the hemisphere con-
tralateral to tracer injection; whereas no
labeled cells were observed in the current
study, this field comprised 4.3% of total
projections to the SC in normal hearing
animals (�62% of all contralateral pro-
jections) (Butler et al., 2016b). We have
argued previously that a bilateral auditory
projection to the SC may reflect a neces-
sity for bilateral auditory cues to guide
orientation behavior; the absence of a
contralateral projection from fAES fol-
lowing deafness supports this idea and
may reflect the reorganized role of fAES in
visual processing. The absence of a discrete corticotectal projec-
tion from fAES is significant because deactivation of this area
significantly impairs visual localization in the deaf (Meredith et
al., 2011). Because corticocortical connectivity to fAES is largely
unchanged following hearing loss (Meredith et al., 2016), it is
unlikely that this behavioral effect is mediated via indirect
effects on corticotectally projecting areas to which fAES is
connected. Rather, projections from fAES to other subcortical
nuclei involved in orienting behavior, such as the striatum,
may be retained to mediate this reorganization.

That a robust corticocollicular projection from fAES fails
to develop in early-deafness fits well with previous hypotheses on
corticotectal circuit development. Although little is known about
the mechanism that underlies the development of multisensory

integration in the SC, one hypothesis that accounts for prolonged
development of cortical influence involves a Hebbian mecha-
nism, through which projections from sensory cortex to the SC
are strengthened by coincident activation in an experience-
dependent manner, whereas projections that do not provide co-
incident activity are pruned away. Such a mechanism has been
modeled by Cuppini et al. (2011, 2012), who suggest that projec-
tions from sensory areas surrounding the anterior ectosylvian
sulcus (AEV, fAES, S4) are present but weak at birth. According
to the model, these projections are strengthened by Hebbian
learning rules and develop receptive fields, which shrink and
come into register, resulting in adult-like multisensory response
properties. Furthermore, it predicts that, if this pattern of corti-
cotectal projections fails to develop, due to an absence of appro-
priate cross-modal experience, the resulting cortical influence

Figure 11. Summary of the cortical projections to the SC for the animals described in the current study (Deaf) and those
previously described by Butler et al. (2016b) (Hearing). In each case, areas containing �1% of the total labeled cells are shown,
with projecting strength color coded according to the color bar at the bottom. In both groups, each of the visual areas involved in
orienting (17, 18, 19, PLLS, and PMLS) has a direct connection with the SC. In hearing animals, fAES was the only auditory cortical
region with a direct connection, and this projection was observed bilaterally. In stark comparison, a diffuse pattern of connectivity
spanning multiple auditory cortical regions was observed in deaf animals: A1, Primary auditory cortex; dPE, dorsal posterior
ectosylvian gyrus; iPE, intermediate posterior ectosylvian gyrus; vPE, ventral posterior ectosylvian gyrus; DZ, dorsal zone of auditory
cortex; IN, insular auditory cortex. ALLS, Anterolateral lateral suprasylvian area; AMLS, anteromedial lateral suprasylvian area.
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would be nonspecific and unable to support multisensory inte-
gration (Patton and Anastasio, 2003; Cuppini et al., 2010;
Ohshiro et al., 2011). This has been functionally demonstrated in
the visual system; although in normally developed animals, asso-
ciation cortex selectively enhances the response of target SC neu-
rons to multisensory stimulus combinations likely to have arisen
from a single event, corticotectal enhancement appears indis-
criminate in animals raised in complete darkness (Yu et al.,
2013). Although functional consequences of early-deafness on
SC modulation remain unknown, the current study provides an-
atomical evidence for a generalized loss of specificity in cortico-
tectal projections, in favor of more diffuse connectivity. This
diffusivity may reflect the absence of activity-dependent
strengthening of the fAES projection, and reduced pruning of
projections from other auditory cortical regions. There is also a
great deal of evidence to support that functional reorganization
of auditory cortex occurs following deafness. Thus, an increased
proportion of labeled cells in auditory cortical fields outside of
fAES may also reflect a strengthening of projections from these
regions that is related to the flow of information from the replace-
ment modality. Whether this modified pattern of connectivity
gives rise to functionally indiscriminate modulation of SC activ-
ity, and whether reorganized auditory cortical inputs provide
useful information regarding stimuli in the remaining sensory
modalities warrants further investigation.

Deafness differs from the dark
Although there are commonalities between the functional conse-
quences of dark rearing and anatomical consequences of early
deafness, it is crucial to highlight a significant difference. While
dark rearing renders the modulatory effect of AEV insufficient to
support multisensory integration, Yu et al. (2013) demonstrated
that the impact on target SC neurons is substantially greater than
in animals raised in a normal visual environment. It is difficult to
imagine how this pattern of results could arise subsequent to a
loss of projections as dramatic as observed in fAES. This discrep-
ancy may reflect an important physiological difference; dark rear-
ing does not involve the degree of ganglion cell loss that occurs in
ototoxic deafening. Increased spontaneous firing rate in the dark-
reared visual system may be sufficient to maintain projections
from AEV, whereas residual activity in surviving spiral ganglia of
the deafened cochlea is incapable of similar maintenance.

Dispersed corticotectal projection in the deaf
Following deafness, crossmodal function is often identified in
brain regions that normally process sound (Lomber et al., 2001;
Meredith et al., 2011). Significant changes in neural projections
within and between sensory cortices were thought to underlie
these functional changes. However, recent studies of thalamocor-
tical and corticocortical connections instead reveal a profound
resilience of cortical afferent patterns following deafness (Kok et al.,
2014; Chabot et al., 2015; Wong et al., 2015; Meredith et al., 2016;
Butler et al., 2017, 2018; Kok and Lomber, 2017). In stark con-
trast, the present study demonstrates significant changes in the
pattern of efferent projections arising from auditory cortex fol-
lowing deafness (Fig. 11).

Many visual and auditory cortical regions that project to the
SC in the mature, intact cat (Harting et al., 1992; Chabot et al.,
2013; Butler et al., 2016b) also project to the SC of newborn
kittens (Stein and Edwards, 1979; Cornwell et al., 1984; Hender-
son and Blakemore, 1986). However, these nascent projections
only develop characteristic topographic and laminar organiza-
tion observed in mature animals after weeks of sensory experi-

ence (Bruce, 1993). Therefore, dispersion of cortical efferents to
the SC following perinatal deafness is most likely an activity-
dependent modification of cortical projections.

The SC maintains sensory representations of the world to orient
toward behaviorally relevant stimuli. Through normal develop-
ment, SC neurons integrate converging inputs from sensory regions
along the anterior ectosylvian sulcus (AEV, fAES, S4). These con-
verging inputs elicit a response from SC neurons exceeding that
elicited by any modality in isolation, increasing the likelihood that a
stimulus engaging multiple senses will be accurately detected. The
experience-dependent development of this top-down modulation is
prolonged and is thus highly susceptible to impoverished input. The
current study demonstrates that, following early deafness, the nor-
mal pattern of auditory corticotectal projections is replaced by a
more diffuse pattern. In addition, there is an increase in the propor-
tion of projections to the SC that originate in limbic cortical areas,
possibly reflecting a larger influence of learned stimulus-associations
on behavior. Together, these results provide the first anatomical ev-
idence of altered auditory cortical outputs following sensory loss.
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