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RESEARCH ARTICLE
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Abstract
The perception of pitch is a widely studied and hotly debated topic in human hearing. Many

of these studies combine functional imaging techniques with stimuli designed to disambigu-

ate the percept of pitch from frequency information present in the stimulus. While useful in

identifying potential “pitch centres” in cortex, the existence of truly pitch-responsive neurons

requires single neuron-level measures that can only be undertaken in animal models. While

a number of animals have been shown to be sensitive to pitch, few studies have addressed

the location of cortical generators of pitch percepts in non-human models. The current study

uses high-field functional magnetic resonance imaging (fMRI) of the feline brain in an

attempt to identify regions of cortex that show increased activity in response to pitch-evok-

ing stimuli. Cats were presented with iterated rippled noise (IRN) stimuli, narrowband noise

stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus

in which phase components were randomized to preserve slowly changing modulations in

the absence of pitch (IRNo). Pitch-related activity was not observed to occur in either pri-

mary auditory cortex (A1) or the anterior auditory field (AAF) which comprise the core audi-

tory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus

responded preferentially to the IRN stimulus when compared to narrowband noise, with

group analyses revealing bilateral activity centred in the posterior auditory field (PAF). This

study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex,

and identifies cortical areas that warrant further investigation. Moreover, we have taken the

first steps in identifying a useful animal model for the study of pitch perception.

Introduction
Pitch is the perceptual correlate of sound frequency, and the way that pitch changes over time
defines the melody of a musical piece. In addition, verbal pitch is fundamental to language
acquisition both for tonal languages, where pitch variations provide basic lexical information,
and for non-tonal languages where pitch is used to convey emotional and other paralinguistic
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information. Moreover, pitch cues are critical for extracting meaningful signals from a back-
ground of competing auditory information, such as is encountered in the classic “cocktail
party” phenomenon (See [1] for a review). Thus, the accurate encoding of pitch is critical to
establishing faithful representations of biologically relevant acoustic stimuli in the listener’s
environment.

The vast majority of pitch-evoking sounds present in the environment contain energy at a
fundamental frequency and at integer multiples of that frequency, known as harmonics. How-
ever, through complex spectrotemporal processing, a singular pitch is perceived that corre-
sponds to the fundamental of the complex source. This pitch percept is the result of two pitch
codes that are established in parallel at the level of the cochlea: a spectral code based on the site
of maximal displacement along the tonotopically organized basilar membrane, and a temporal
code based on the rate of action potential generation in afferent neurons that synapse at that
characteristic place. While these cues are encoded at the auditory periphery, a growing litera-
ture suggests that the percept of pitch is first established cortically, at a point beyond primary
auditory cortex (A1). This is despite evidence that orthogonal tonotopic and periodotopic
maps exist in A1 that may provide the capacity for pitch extraction at this level [2–3]. Still,
studies using electroencephalography (EEG) or functional magnetic resonance imaging (fMRI)
in humans suggest that pitch processing is localized either to an area along lateral Heschl’s
gyrus [4–7] or planum temporale [8–11]. These results have been supported by electrophysio-
logical recordings in non-human primates that fail to find pitch-sensitive neurons in A1,
instead localizing pitch processing to a cortical belt region along the anterolateral border of A1
in the marmoset [12] and to the lateral belt region in the macaque [13].

While this convergence of evidence suggests pitch emerges beyond primary auditory cortex,
how the peripherally-encoded pitch cues are converted into a singular percept remains poorly
understood. This represents a critical step in object representation, as perceptual judgements
and consequent actions are not based on individual analysis of the frequency components
encoded by peripheral structures, but instead occur following higher-level pitch perception.
For example, while two speakers may produce energy at the same frequency components, the
way in which the sum of these components is represented by pitch-responsive neurons helps to
discriminate the speakers and may affect the meaning extracted from speech. The use of animal
models allows for the combination of traditional fMRI studies of pitch perception with more
invasive methods that will provide the necessary information to address this open question.
Still, the neural underpinnings of pitch perception have yet to be addressed in a number of tra-
ditional models of auditory function. For example, the ability of cats to perceive the pitch of
complex auditory stimuli has long been known [14–15], yet the cortical region subserving this
function remains unidentified. Using fMRI, the current study seeks to identify areas of cat
auditory cortex that contribute to pitch perception and aims to provide a basis for future stud-
ies to further examine the topic of pitch encoding in the cat. A better understanding of pitch
perception will provide insight into how listeners engage with meaningful stimuli in their envi-
ronment. Furthermore, it may help elucidate issues related to impoverished pitch processing,
such as those reported by individuals with congenital amusia [16], and may provide a basis for
improving the encoding of pitch by cochlear implant users.

Materials and Methods

Animal Preparation
Ten adult (>6 months) domestic cats (Liberty Labs, Waverly, NY) participated in this experi-
ment, and were housed as a clowder. All procedures were approved by the University of West-
ern Ontario’s Animal Use Subcommittee of the University Council on Animal Care and were
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in accordance with the guidelines specified by the Canadian Council on Animal Care [17].
Normal hearing thresholds were verified for each animal using click-evoked auditory brain-
stem responses (ABRs) measured with an Eclipse EP15 Diagnostic ABR system (Interacoustics
A/S, Denmark). Prior to each imaging session, cats were pre-medicated with a mixture of atro-
pine (0.02 mg/kg s.c.) and acepromazine (0.02 mg/kg s.c.). This combination has been shown
to reduce the amount of general anesthesia necessary during scanning [18], thus minimizing
anesthetic-induced cortical suppression. Each animal was anaesthetized 20 minutes later with a
cocktail of ketamine (4 mg/kg i.m.) and dexdomitor (0.025 mg/kg i.m.). Pilot studies in our lab
comparing anesthetic regimes for functional imaging in the cat have identified this as the ideal
combination of drugs to maintain adequate sedation for the duration of a scanning session
while optimizing BOLD response. This procedure, described in length by Brown and colleagues
[19] has been shown to be effective in demonstrating stimulus-evoked activity in the cat’s audi-
tory cortex [19–20]. Once anesthetized, the animal was intubated and an indwelling catheter
was placed in the saphenous vein to facilitate the maintenance of anesthesia. Once prepared,
the animal was placed in a sternal position within a custom-built Plexiglas apparatus (Fig 1).
Body temperature was maintained with heating discs placed inside the apparatus, and vitals
including respiratory rate, end-tidal CO2, heart rate, non-invasive blood pressure, and blood-
oxygen saturation were continuously monitored. MRI-compatible earphone inserts comprised
of sound-attenuating foam surrounding a tube designed to deliver sound stimuli as closely as
possible to the tympanic membrane were placed in the ear canals. The animals head was then
placed inside a custom-built 8-channel radio frequency (RF) coil, and stabilized with sound
dampening compression foam padding that further attenuated scanner noise. Finally, the ani-
mal and the Plexiglas apparatus were placed inside the bore of the magnet. For the remainder
of the session, anesthesia was maintained through continuous administration of ketamine
(0.6–0.75 mg/kg/hr i.v.) and spontaneous inhalation of isoflurane (0.4–0.5%). Following each
scanning session, anesthesia was discontinued and animals were monitored until they recov-
ered from anesthetic effects. The intubation tube was removed when the cat exhibited a gag

Fig 1. An anesthetized animal in the 8-channel RF coil. The head is surrounded by foam that serves to
minimize movement and attenuate scanner noise. Also pictured is the intubation tube which permits the
administration of isoflurane anesthesia.

doi:10.1371/journal.pone.0134362.g001
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reflex and increased jaw tone. Following successful recovery, the indwelling catheter was
removed and cats were returned to their clowder. Every effort was made to minimize animal
trauma during the entire scanning period.

Stimuli
All stimuli were generated in MatLab (MathWorks) and presented at 85 dB SPL using in-
house custom software (Microsoft Visual Studio) on a Dell laptop through an external Roland
Corporation soundcard (24-bit/96kHz; Model UA-25EX) and Pyle Pro external amplifier
(Model PCAU11) to MRI-compatible foam earphone inserts (Sensimetric Model S14). The
narrowband Gaussian noise (NBN) stimulus was 400 ms in duration and covered a ¼ octave
band centered at 10 kHz (48 dB/octave band pass filter, 10 ms linear onset/offset ramps). The
IRN stimulus was generated by first creating a 1s Gaussian noise. This noise sample was then
duplicated and added to itself following a 2.5ms delay. This delay-and-add process was
repeated 16 times to create a stimulus with a perceivable pitch of 400 Hz. This process resulted
in a 1040 ms stimulus that increased in amplitude gradually over the first 40 ms and decreased
gradually over the last 40 ms. To correct for this, the first and last 320 ms were removed to cre-
ate a 400 ms stimulus with equal amplitude across its entire duration. Finally, the IRN stimulus
was band pass filtered to match the spectral range of the narrowband noise stimulus (a ¼
octave band centered at 10 kHz, 48 dB/octave filter) and 10 ms onset and offset ramps were
applied. In addition, an IRNo stimulus was generated as described by Barker and colleagues
[11]. In short, the IRN stimulus described above was sampled with a rectangular window with
duration equal to the IRN delay (2.5 ms). A fast Fourier transform (FFT) was used to determine
the phase and amplitude spectra of the sample and phase components were randomized. An
inverse FFT was then used to regenerate the time representation. The analysis window was
advanced by 2.5 ms and this process was repeated through the duration of the stimulus. The
regenerated samples were concatenated (preserving onset times) to create a 400 ms IRNo stim-
ulus with fine structure information (and resulting pitch percept) removed. The IRNo stimulus
was band pass filtered to match the spectral range of the IRN and narrowband noise stimuli,
and 10 ms linear onset and offset ramps were applied. This limited bandwidth minimized
interference between the stimuli used in the current study and scanner noise, which is largest
at lower frequencies, while ensuring stimuli were well within the normal range of feline hear-
ing. Moreover, the pitch percept evoked by IRN stimuli is dependent upon temporal repetition
rather than resolvable spectral content such that traditional spectral and temporal envelope
models of pitch perception are unable to explain the perception of IRN pitch [21]. Thus, high-
pass filtering has a minimal impact on the pitch percept of IRN stimuli. Each of the stimulus
types (NBN, IRN, IRNo) were presented in bursts consisting of 30 repetitions of the 400 ms
stimulus with a 100 ms interstimulus interval (ISI), for a total block duration of 15 s.

MRI Parameters & Scanning Protocol
All data were acquired on an actively shielded 68 cm 7 T horizontal bore scanner with a
DirectDrive console (Agilent, Santa Clara, California) equipped with a Siemens AC84 gradient
subsystem (Erlangen, Germany) located at the Robarts Research Institute, and operating at a
slew rate of 300 mT/m/s. An in-house designed and manufactured conformal 10 cm cylindrical
8-channel transceive radiofrequency coil was used for all imaging sessions. Magnetic field opti-
mization (B0 shimming) was performed using an automated 3D mapping procedure [22] over
the specific imaging volume of interest. For each cat, functional volumes were collected over
the whole brain in an axial orientation using a single shot echo-planar imaging (EPI) acquisi-
tion with grappa acceleration (R = 3) and the following parameters: TR = 2000 ms; TE = 19 ms;
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flip = 70 degrees; slices = 26 x 1 mm; matrix = 96 x 96; FOV = 84 x 84 mm; acquisition voxel
size = 0.88 mm x 0.88 mm x 1.0 mm; acquisition time = 2 s/volume; BW = 3719 Hz/px. Images
were corrected for physiological fluctuations using navigator echo correction [23]. A high-reso-
lution anatomical reference volume was collected along the same orientation and FOV as the
functional images using a FLASH imaging sequence (TR = 750 ms; TE = 8ms; matrix = 256 x
256; acquisition voxel size = 281 μm x 281 μm x 1 mm). At the start of each scanning session, a
broadband noise stimulus (0–25 kHz, 400 ms bursts with 10 ms onset/offset ramps, 100 ms
ISI) was presented in an ON-OFF block design to confirm acoustically-evoked activity in audi-
tory cortex. Following this confirmation, each of the stimuli were presented in ON-OFF con-
tinuous block protocols with each block consisting of 15 volumes (TR and TA = 2s). Three to
six blocks of each stimulus type were collected in a scanning session. While the choice of a con-
tinuous scanning protocol may have a minimal impact on the salience of pitch-evoking stimuli,
previous work in our lab has suggested that continuous scanning optimizes the quality and
quantity of data obtained in the anesthetized cat [20]. Moreover, tonotopic map representation
in human auditory cortex has been shown to be only minimally distorted by scanner noise
[24]. Three blocks of each stimulus type were collected in a run, and stimulus blocks were inter-
leaved with baseline blocks during which no stimulus was presented.

Data Modelling
Individual animal analyses. Functional image volumes from each animal were analyzed

separately using SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK) and
MatLab software. Image volumes for each animal were reoriented, realigned to the mean,
motion corrected, co-registered to the high-resolution structural image from the same session,
and smoothed with a 2 mm Gaussian full width at half maximum (FWHM) kernel. Some ani-
mals were scanned on multiple days; in these cases, functional volumes were co-registered to
the anatomical image collected on the first day of scanning to facilitate data analysis across
scanning sessions. A general linear model of the functional data was created for each animal
imaged. Head motion parameters (3 translational and 3 rotational measures) were included as
regressors of no interest in the model to account for movement-related artifacts. Following
model estimation, t-contrasts were generated for each of the stimuli presented (stimulus–base-
line) as well as for the difference in activation between the IRN and NBN stimuli (IRN–NBN)
and for the difference between IRN and IRNo stimuli (IRN–IRNo). Hand drawn region of
interest (ROI) masks were generated for the auditory cortex of each animal based on anatomy.

Group-level analysis. Group-level analysis was performed using SPM8 (Wellcome Trust
Centre for Neuroimaging, UCL, London, UK) and MatLab software. Image volumes from all
animals were reoriented, realigned to the mean, co-registered to the high-resolution structural
image from the same session, normalized to an in-house generated feline anatomical template,
and smoothed with a 2 mm Gaussian full width at half maximum (FWHM) kernel. Full details
regarding the generation of the feline template will be addressed in a future manuscript; in
short, 12 anatomical scans from a 7T high-field MRI scanner were preprocessed with SPM8
(Wellcome Trust Centre for Neuroimaging, UCL, London) and MatLab to align them to a
common coordinate system. The images were then normalized and averaged first to a reference
image, then to the average generated by first pass analysis. The resultant second pass average
was then smoothed and provided for group analyses. A general linear model of the normalized
functional data was created with head motion parameters (3 translational and 3 rotational
measures) included as regressors of no interest. Following model estimation, t-contrasts were
generated for each of the stimuli presented (stimulus–baseline) as well as for the difference in
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activation between the IRN and NBN stimuli (IRN–NBN) and for the difference between IRN
and IRNo stimuli (IRN–IRNo).

BOLD Signal Representations and Time Courses
Data from each animal were first extracted separately, followed by group-level extraction. In
each case, a voxelwise threshold of p<0.001 (uncorrected) and a cluster-level threshold of
p<0.05 (FWE-corrected) were applied to all results. Within each cluster, peak voxels showing
a greater BOLD signal in response to IRN stimuli than either the NBN or IRNo stimuli were
assigned to one of 13 defined areas of cat auditory cortex using a method described previously
[19,25]. Briefly, the co-ordinates of a voxel of interest (VOI) were recorded from the output of
the linear model, and plotted in three-dimensional space on the high-resolution anatomical
scan for an individual animal, or on the anatomical template in the case of group analysis.
Landmarks previously shown to delineate cortical areas were then used to determine the loca-
tion of the BOLD activity peak. The mean percent signal change (PSC) at each voxel within a
cluster was computed across the entire block of each stimulus type and normalized by subtract-
ing the mean BOLD signal during baseline blocks. To visualize activity related to pitch process-
ing, the difference in mean BOLD activity was then computed for each voxel (IRN-NBN and
IRN-IRNo), and plotted on anatomical images. Additionally, mean PSCs across voxels com-
prising a 1 mm sphere surrounding each VOI were computed for each of the 15 volumes in a
stimulus block individually to examine the time course of BOLD signal changes for each stimu-
lus type and contrast of interest. One-sample t-tests corrected for multiple comparisons were
used to determine where BOLD signals differed significantly from baseline. Related-samples t-
tests corrected for multiple comparisons were used to compare the PSC elicited by different
stimulus types.

Results
In order to determine the area of cat auditory cortex that selectively responds to stimuli with
pitch, an IRN stimulus was contrasted against a narrowband noise stimulus that consisted of
identical spectral content, but which did not elicit a pitch percept. Five of the ten animals
scanned showed clusters of significant activity for this contrast. At an individual-animal level,
these clusters of significant BOLD activity encompassed multiple areas of the auditory cortex
(an example is shown in Fig 2) with peak levels of activity typically observed in areas occupying
the banks of the posterior ectosylvian sulcus, including the posterior auditory field (PAF), ven-
tral auditory field (VAF), and ventral posterior auditory field (VPAF).

A group-level analysis was also performed to identify the locus of pitch processing across
animals. The IRN-NBN contrast revealed large, significant clusters of BOLD activity centered
bilaterally over PAF (Fig 3). The extracted BOLD signal time course for a 1 mm sphere sur-
rounding the maximally significant voxel for this contrast are presented in Fig 4 for the left
(panel A) and right (panel B) hemispheres. While a majority of pitch imaging studies in
humans have employed this contrast (IRN-NBN), it has been suggested that this contrast is
insufficient to truly image pitch-specific regions since the process involved in generating IRN
stimuli introduces modulations of signal strength that are unrelated to the pitch percept, and
which are not present in filtered Gaussian noise [11]. In an attempt to further isolate pitch-
related information, BOLD signal changes in response to an IRN stimulus were contrasted
against the response to a no-pitch IRN stimulus (IRNo) in which phase components are ran-
domized to remove the pitch percept, but preserve the slowly changing signal modulations.
This contrast (IRN-IRNo) revealed some auditory cortex activity bilaterally, but this failed to
reach significance (data not shown).

fMRI of Pitch Processing in the Cat
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Discussion

Pitch-related activity is clustered about pes
Single-animal based analysis of pitch perception revealed large clusters of BOLD activity that
encompassed a number of fields of the cat auditory cortex, primarily those surrounding the
posterior ectosylvian sulcus (see Fig 5 for a summary). This area has previously been consid-
ered as a candidate for processing auditory patterns in the spectral and temporal domains,
such as those found in communicative signals [26]. Group-level analysis revealed that pitch-
related BOLD activity is centred over the posterior auditory field (PAF). The presence of pitch-

Fig 2. Representative T-statistic map. BOLD activity for the IRN-NBN contrast in a single animal.
Significant activity was observed across multiple fields of the auditory cortex, with significant peaks in both
the posterior auditory field (PAF) and second auditory cortex (A2). Maps are overlaid on coronal (top row) and
horizontal (middle row) anatomical slices, and are superimposed on a lateral view of cat cortex. The local
peak signal change maxima are indicated by crosshairs. A: anterior, P: posterior, V: ventral, D: dorsal.

doi:10.1371/journal.pone.0134362.g002
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responsive neurons in PAF satisfies a number of a priori hypotheses based on human and ani-
mal studies. Maximal pitch-related activation was not observed to occur in either primary audi-
tory cortex (A1) or the anterior auditory field (AAF), which comprise the core auditory cortex
in the cat [27]. Rather, it was localized to an area of auditory cortex that is functionally
upstream from A1/AAF that has been shown to receive direct projections from core areas [27].
Interestingly, the cluster of activity in the left hemisphere did extend over the portion of A1
that a previous optical imaging study [2] determined corresponds to a periodicity of 400 Hz
(the pitch elicited by the IRN stimulus in the current study). The locus of maximal activity was
the dorsal aspect of PAF, which is located adjacent to the low-frequency border of A1, provid-
ing analogous homology to that observed in the marmoset [12]. While the IRN-NBN contrast
revealed strong, bilateral activation of PAF, the IRN-IRNo contrast failed to reveal any signifi-
cant activity.

Frequency- and pitch-tuning in PAF
Because pitch is considered to be the functional correlate of stimulus frequency, one would
expect to find a frequency-based representation in pitch-responsive cortex. Indeed, each of
areas PAF has been previously shown to display tonotopic organization [28–29]. In addition,

Fig 3. Group T-statistic maps. BOLD activity for the IRN-NBN contrast in the group of cats tested. The
peaks of significant clusters of activity were localized to voxels within the posterior auditory field (PAF)
bilaterally. Maps are overlaid on coronal (top row) and horizontal (middle row) anatomical slices, and are
superimposed on a lateral view of cat cortex. The local peak signal change maxima are indicated by
crosshairs. A: anterior, P: posterior, V: ventral, D: dorsal.

doi:10.1371/journal.pone.0134362.g003
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neurons within a pitch-responsive area would be expected to respond to a variety of stimuli
that evoke a common pitch (e.g. to a 1 kHz pure tone as well as a stimulus that evokes a 1 kHz
percept in the absence of energy at the fundamental frequency). While early studies suggested

Fig 4. Hemodynamic time courses for bilateral PAF activity averaged across animals. The mean percent signal change in voxels within a 1mm sphere
of the peak voxels are plotted for each volume in response to IRN (red) and NBN (green) stimuli. Error bars indicate the standard error of the mean. Points
where an individual time course differs significantly from zero are marked by an asterisk while points where the two time courses significantly differ from each
other are indicated by shading.

doi:10.1371/journal.pone.0134362.g004

Fig 5. Summary of the areas of cat auditory cortex that respond to pitch-evoking stimuli at the
individual-animal level. Individual-level analyses revealed clusters of pitch-related BOLD activity (IRN-NBN
contrast) that spread across a number of areas of auditory cortex. Shading marks areas where significant
peaks of BOLD activity were located in at least one animal.

doi:10.1371/journal.pone.0134362.g005
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that PAF neurons showed narrow, single-frequency tuning curves [26,30], extracellular single-
unit recordings have identified a significant proportion of PAF neurons with broader, multi-
peaked tuning curves shaped by complex patterns of inhibition [31–32]. Loftus and Sutter [32]
also identified PAF neurons that produce long-latency responses to tonal stimuli that are unre-
lated to stimulus offset. These late responses might contribute to spectral integration across
multiple frequencies, or to the convergence of information from parallel pathways such as
those involved in spectral/temporal pitch coding. PAF has repeatedly been shown to be critical
to sound localization [33–35]. Thus, one possible role of pitch-sensitive neurons in PAF
involves the interpretation of pitch-based localization cues resulting from head-related transfer
functions; these cues help to overcome the cone of confusion that remains after interaural dif-
ferences are computed (see [36] for review).

In PAF, differences in activity between pitch-evoking and noise stimuli involved a negative
BOLD signal in response to narrowband noise in addition to an accompanying increase in
BOLD signal in response to IRN. The BOLD signal is a measure of the ratio of oxygenated to
deoxygenated blood and is an indirect measure of neural activity; as such the meaning of a neg-
ative BOLD signal (relative to baseline) is not immediately evident. However, a growing body
of research suggests that a negative BOLD signal reflects GABA-mediated [37] inhibitory sig-
nalling and concurrent arteriolar vasoconstriction across cortical areas [38–40]. Thus, the
response to pitch in much of pes-adjacent cortex appears to reflect a combined sensitivity to
pitch-evoking stimuli and suppression of auditory stimuli without pitch.

Pitch-evoked vs. spectrotemporal modulation-evoked activity
Many human studies of pitch perception combine minimally invasive functional imaging tech-
niques with IRN stimuli that target temporal cues to elicit the perception of pitch. In the major-
ity of these studies, activity elicited in response to IRN is contrasted against a spectrally-
matched noise stimulus to isolate pitch-related activity [5,41–42]. However, it has been sug-
gested that slowly-varying spectrotemporal modulations present in IRN stimuli, but which are
unrelated to stimulus pitch may confound interpretation of the IRN-NBN contrast [11]. This
is despite evidence that cortical areas identified by the IRN-NBN contrast in humans are also
activated by a wide variety of pitch-evoking stimuli that do not contain similar slowly varying
modulation [6]. To further examine this issue, an IRNo stimulus was created which contained
slow spectrotemporal modulations in the absence of pitch. A contrast between the pitch-evok-
ing IRN stimulus and the IRNo stimulus did not reveal significant activity at the group level. A
lower level of activity is congruent with the findings of Barker and colleagues [11] who also
observed a marked decrease in the number of subjects showing significant differences in BOLD
activity between the two stimulus types (10/16 subjects in their IRN-NBN contrast vs. 3/16 for
their IRN-IRNo contrast). Moreover, the possibility that some animals included in the current
group analysis may have had partially supressed cortical activity due to anesthetic effects may
also have led to a more conservative estimate.

Making a case for PAF as the centre of pitch processing
While there remains some debate regarding the existence of a “pitch centre”, there are agreed
upon criteria that should be satisfied by a candidate area. For example, the area should general-
ize across pitch-evoking stimuli and should demonstrate a pattern of responses that correlates
with the pitch salience. Thus, future studies should employ a wider variety of pitch-evoking sti-
muli to determine whether any of the candidate areas identified in the current study satisfy
these criteria. In the current study five of ten animals scanned showed pitch-related activity
that reached significance for one of the contrasts performed. This could be attributed to a
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number of factors including anaesthetic effects on cortical activity, as well as the reduced pitch
salience of IRN stimuli relative to common pitch-evoking stimuli such as those used for com-
munication. Indeed a more robust examination outlining the role of pitch salience would help
to address this concern. Finally, the spatial resolution of the current study does not allow for
the exclusion of pitch processing at the individual neuron level in areas lower in the auditory
hierarchy. Thus, single-cell electrophysiology should be undertaken in an attempt to identify
pitch-sensitive neurons in PAF, and to further support the absence of such neurons in primary
auditory fields. Localizing pitch-responsive neurons in cat auditory cortex will provide a flexi-
ble model in which to examine pitch processing, as well as changes that may occur in response
to deprivation and/or the introduction of auditory prostheses.
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