164 research outputs found

    Homogenization and Scattering Analysis of Second-Harmonic Generation in Nonlinear Metasurfaces

    Full text link
    We propose an extensive discussion on the homogenization and scattering analysis of second-order nonlinear metasurfaces. Our developments are based on the generalized sheet transition conditions (GSTCs) which are used to model the electromagnetic responses of nonlinear metasurfaces. The GSTCs are solved both in the frequency domain, assuming an undepleted pump regime, and in the time-domain, assuming dispersionless material properties but a possible depleted pump regime. Based on these two modeling approaches, we derive the general second-harmonic reflectionless and transmissionless conditions as well as the conditions of asymmetric reflection and transmission. We also discuss and clarify the concept of nonreciprocal scattering pertaining to nonlinear metasurfaces

    Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation

    Get PDF
    Second harmonic generation from plasmonic nanoantennas is investigated numerically using a surface integral formulation for the calculation of both the fundamental and the second harmonic electric field. The comparison between a realistic and an idealized gold nanoantenna shows that second harmonic generation is extremely sensitive to asymmetry in the nanostructure shape even in cases where the linear response is barely modified. Interestingly, minute geometry asymmetry and surface roughness are clearly revealed by far-field analysis, demonstrating that second harmonic generation is a promising tool for the sensitive optical characterization of plasmonic nanostructures. Furthermore, defects located where the linear field is strong (e.g., in the antenna gap) do not necessarily have the strongest impact on the second harmonic signal

    Detecting the trapping of small metal nanoparticles in the gap of nanoantennas with optical second harmonic generation

    Get PDF
    The second harmonic generation from gold nanoparticles trapped into realistic and idealized gold nanoantennas is numerically investigated using a surface integral equations technique. It is observed that the presence of a nanoparticle in the nanoantenna gap dramatically modifies the second harmonic intensity scattered into the far-field. These results clearly demonstrate that second harmonic generation is a promising alternative to the conventional linear optical methods for the detection of trapping events at the nanoscale

    Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle

    Get PDF
    Optical nanoantennas are a novel tool to investigate previously unattainable dimensions in the nanocosmos. Just like their radio-frequency equivalents, nanoantennas enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here, we present for the first time antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we utilize the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitude by an order of magnitude which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of nanoobjects, ranging from single protein binding events via nonlinear tensor elements to the limits of continuum mechanics

    Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy

    Get PDF
    While plasmonic antennas composed of building blocks made of the same material have been thoroughly studied, recent investigations have highlighted the unique opportunities enabled by making compositionally asymmetric plasmonic systems. So far, mainly heterostructures composed of nanospheres and nanodiscs have been investigated, revealing opportunities for the design of Fano resonant nanostructures, directional scattering, sensing and catalytic applications. In this article, an improved fabrication method is reported that enables precise tuning of the heterodimer geometry, with interparticle distances made down to a few nanometers between Au–Ag and Au–Al nanoparticles. A wide range of mode energy detuning and coupling conditions are observed by near field hyperspectral imaging performed with electron energy loss spectroscopy, supported by full wave analysis numerical simulations. These results provide direct insights into the mode hybridization of plasmonic heterodimers, pointing out the influence of each dimer constituent in the overall electromagnetic response. By relating the coupling of nondipolar modes and plasmon–interband interaction with the dimer geometry, this work facilitates the development of plasmonic heterostructures with tailored responses, beyond the possibilities offered by homodimers

    Mode-matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Get PDF
    Boosting nonlinear frequency conversion in extremely confined volumes remains a key challenge in nano-optics, nanomedicine, photocatalysis, and background-free biosensing. To this aim, field enhancements in plasmonic nanostructures are often exploited to effectively compensate for the lack of phase-matching at the nanoscale. Second harmonic generation (SHG) is, however, strongly quenched by the high degree of symmetry in plasmonic materials at the atomic scale and in nanoantenna designs. Here, we devise a plasmonic nanoantenna lacking axial symmetry, which exhibits spatial and frequency mode overlap at both the excitation and the SHG wavelengths. The effective combination of these features in a single device allows obtaining unprecedented SHG conversion efficiency. Our results shed new light on the optimization of SHG at the nanoscale, paving the way to new classes of nanoscale coherent light sources and molecular sensing devices based on nonlinear plasmonic platforms.Comment: 14 pages, 4 figure

    Universal scaling of plasmon coupling in metal nanostructures: Checking the validity for higher plasmonic modes using second harmonic generation

    Get PDF
    The universal scaling of plasmon coupling in metallic nanostructures is now a well-established feature. However, if the interaction between dipolar plasmon modes has been intensively studied, this is not the case of the coupling between higher order ones. Using Mie theory extended to second harmonic generation, we investigate the coupling between quadrupolar plasmon modes in metallic nanoshells. Like in the case of dipolar plasmon modes, a universal scaling behavior is observed in agreement with the plasmon hybridization model
    • …
    corecore