3,613 research outputs found

    Hierarchy of integrable Hamiltonians describing of nonlinear n-wave interaction

    Full text link
    In the paper we construct an hierarchy of integrable Hamiltonian systems which describe the variation of n-wave envelopes in nonlinear dielectric medium. The exact solutions for some special Hamiltonians are given in terms of elliptic functions of the first kind.Comment: 17 page

    Breaking of the overall permutation symmetry in nonlinear optical susceptibilities of one-dimensional periodic dimerized Huckel model

    Full text link
    Based on infinite one-dimensional single-electron periodic models of trans-polyacetylene, we show analytically that the overall permutation symmetry of nonlinear optical susceptibilities is, albeit preserved in the molecular systems with only bound states, no longer generally held for the periodic systems. The overall permutation symmetry breakdown provides a fairly natural explanation to the widely observed large deviations of Kleinman symmetry for periodic systems in off-resonant regions. Physical conditions to experimentally test the overall permutation symmetry break are discussed.Comment: 7 pages, 1 figur

    Using Wave-Packet Interferometry to Monitor the External Vibrational Control of Electronic Excitation Transfer

    Full text link
    We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry. Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nonlinear wave-packet interferometry (nl-WPI) experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a sub-resonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signal due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper

    Hawking radiation from "phase horizons" in laser filaments?

    Full text link
    Belgiorno et al have reported on experiments aiming at the detection of (the analogue of) Hawking radiation using laser filaments [F. Belgiorno et al, Phys. Rev. Lett. 105, 203901 (2010)]. They sent intense focused Bessel pulses into a non-linear dielectric medium in order to change its refractive index via the Kerr effect and saw creation of photons orthogonal to the direction of travel of the pluses. Since the refractive index change in the pulse generated a "phase horizon" (where the phase velocity of these photons equals the pulse speed), they concluded that they observed the analogue of Hawking radiation. We study this scenario in a model with a phase horizon and a phase velocity very similar to that of their experiment and find that the effective metric does not quite correspond to a black hole. The photons created in this model are not due to the analogue of black hole evaporation but have more similarities to cosmological particle creation. Nevertheless, even this effect cannot explain the observations -- unless the pulse has significant small scale structure in both the longitudinal and transverse dimensions.Comment: 13 pages RevTeX, 2 figure

    Linear response functions for a vibrational configuration interaction state

    Get PDF
    Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approac

    On the Non-invasive Measurement of the Intrinsic Quantum Hall Effect

    Full text link
    With a model calculation, we demonstrate that a non-invasive measurement of intrinsic quantum Hall effect defined by the local chemical potential in a ballistic quantum wire can be achieved with the aid of a pair of voltage leads which are separated by potential barriers from the wire. B\"uttiker's formula is used to determine the chemical potential being measured and is shown to reduce exactly to the local chemical potential in the limit of strong potential confinement in the voltage leads. Conditions for quantisation of Hall resistance and measuring local chemical potential are given.Comment: 16 pages LaTex, 2 post-script figures available on reques

    Using the Hopf Algebra Structure of QFT in Calculations

    Get PDF
    We employ the recently discovered Hopf algebra structure underlying perturbative Quantum Field Theory to derive iterated integral representations for Feynman diagrams. We give two applications: to massless Yukawa theory and quantum electrodynamics in four dimensions.Comment: 28 p, Revtex, epsf for figures, minor changes, to appear in Phys.Rev.
    • …
    corecore