8,278 research outputs found

    Lessons from PHOBOS

    Get PDF
    In June 2005 the PHOBOS Collaboration completed data taking at RHIC. In five years of operation PHOBOS recorded information for Au+Au at sNN\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV, Cu+Cu at 22.4, 62.4 and 200 GeV, d+Au at 201 GeV, and p+p at 200 and 410 GeV, altogether more than one billion collisions. Using these data we have studied the energy and centrality dependence of the global properties of charged particle production over essentially the full 4π\pi solid angle and (for pions near mid rapidity) charged particle spectra down to transverse momenta below 30 MeV/c. We have also studied correlations of particles separated in pseudorapidity by up to 6 units. We find that the global properties of heavy ion collisions can be described in terms of a small number of simple dependencies on energy and centrality, and that there are strong correlations between the produced particles. To date no single model has been proposed which describes this rich phenomenology. In this talk I summarize what the data is explicitly telling us.Comment: 8 pages, 15 figure

    Extended Longitudinal Scaling: direct evidence of saturation

    Get PDF
    Multiparticle production of charged particles at high energies exhibit the phenomenon of Limiting Fragmentation. Furthermore, the region in rapidity over which the production of particles appears to be independent of energy, increases with energy. It is argued that this phenomenon, known as Extended Longitudinal Scaling, is a direct manifestation of some kind of saturation, akin to that in the Color Glass Condensate picture of particle production.Comment: 10 pages, 10 figures, Invited paper presented at The Glasma Workshop, BNL, May 201

    Trends in multiparticle production and some "predictions" for pp and PbPb collisions at LHC

    Full text link
    Based on trends seen at lower energies we "predict" the multiplicities and pseudorapidity distributions of particle density and elliptic flow that will be seen in PbPb and pp collisions at the LHC. We argue that, if these predictions turn out to be correct, either these quantities are insensitive to the state of matter created in high energy heavy ion collisions or the observed simplicity and universality of the data must be telling us something profound about the mechanism of particle production, which to this date is not well understood.Comment: Invited Talk at SQM2007 Conferenc

    Bulk hadron production at high rapidities

    Get PDF
    Recent experimental observations on the `bulk' features of particle production at high (pseudo)rapidities will be reviewed. This kinematic region is of interest mostly because of its relevance to the theoretical description of initial state effects of nuclei at ultra-relativistic energies. Measurements of the charged hadron multiplicity density as well as the pseudorapidity dependence of the elliptic and directed flow exhibit a remarkable scaling property as a function of collision energy. This scaling seems to hold for pions and even photons and J/Psi-s, but is violated for protons. The special role of baryons will be discussed using selected results on nuclear transparency and baryon stopping.Comment: 10 pages, 8 figures. Prepared for the Proceedings of the Quark Matter 2005 Conferenc

    3D Jet Tomography of Twisted Strongly Coupled Quark Gluon Plasmas

    Full text link
    The triangular enhancement of the rapidity distribution of hadrons produced in p+A reactions relative to p+p is a leading order in A^{1/3}/log(s) violation of longitudinal boost invariance at high energies. In A+A reactions this leads to a trapezoidal enhancement of the local rapidity density of produced gluons. The local rapidity gradient is proportional to the local participant number asymmetry, and leads to an effective rotation in the reaction plane. We propose that three dimensional jet tomography, correlating the long range rapidity and azimuthal dependences of the nuclear modification factor, R_{AA}(\eta,\phi,p_\perp; b>0), can be used to look for this intrinsic longitudinal boost violating structure of A+AA+A collisions to image the produced twisted strongly coupled quark gluon plasma (sQGP). In addition to dipole and elliptic azimuthal moments of R_{AA}, a significant high p_\perp octupole moment is predicted away from midrapidity. The azimuthal angles of maximal opacity and hence minima of R_{AA} are rotated away from the normal to the reaction plane by an `Octupole Twist' angle, \theta_3(\eta), at forward rapidities.Comment: 10 Pages, 16 Figures, RevTex, Replaced with Peer reviewed verion for PR

    Baryon Stopping in Au+Au and p+p collisions at 62 and 200 GeV

    Full text link
    BRAHMS has measured rapidity density distributions of protons and antiprotons in both p+p and Au+Au collisions at 62 GeV and 200 GeV. From these distributions the yields of so-called "net-protons", that is the difference between the proton and antiproton yields, can be determined. The rapidity dependence of the net-proton yields from peripheral Au+Au collisions is found to have a similar behaviour to that found for the p+p results, while a quite different rapidity dependence is found for central Au+Au collisions. The net-proton distributions can be used together with model calculations to find the net-baryon yields as a function of rapidity, thus yielding information on the average rapidity loss of beam particles, the baryon transport properties of the medium, and the amount of "stopping" in these collisions.Comment: Proceedings for Quark Matter 2009, for the BRAHMS collaboratio

    Wounded quarks and diquarks in high energy collisions

    Full text link
    Particle production in Au-Au, Cu-Cu, d-Au and p-p collisions at 200 GeV c.m. energy are analyzed in the wounded quark-diquark model. Existing data are well reproduced. Emission functions of wounded and unwounded constituents are determined. Implications for the collective evolution of the system are discussed.Comment: version to be published in Phys. Rev. C, minor changes, discussion extende

    Strangeness enhancement at LHC

    Full text link
    We study production of strangeness in the hot QGP fireball in conditions achieved at LHC, and use these results to obtain soft (strange) hadron multiplicities. We compare the chemical equilibrium and non-equilibrium conditions and identify characteristic experimental observables.Comment: Presented at SQM07, to appear in JPG special issue. One table with prediction
    corecore