4 research outputs found

    A Soft Computing System to Perform Face Milling Operations

    Get PDF
    In this paper we present a soft computing system developed to optimize the face milling operation under High Speed conditions in the manufacture of steel components like molds with deep cavities. This applied research presents a multidisciplinary study based on the application of neural projection models in conjunction with identification systems, in order to find the optimal operating conditions in this industrial issue. Sensors on a milling centre capture the data used in this industrial case study defined under the frame of a machine-tool that manufactures industrial tools. The presented model is based on a two-phase application. The first phase uses a neural projection model capable of determine if the data collected is informative enough. The second phase is focus on identifying a model for the face milling process based on low-order models such as Black Box ones. The whole system is capable of approximating the optimal form of the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples, is the most appropriate model to control such industrial task for the case of steel tools

    A Soft Computing System to Perform Face Milling Operations

    Get PDF
    In this paper we present a soft computing system developed to optimize the face milling operation under High Speed conditions in the manufacture of steel components like molds with deep cavities. This applied research presents a multidisciplinary study based on the application of neural projection models in conjunction with identification systems, in order to find the optimal operating conditions in this industrial issue. Sensors on a milling centre capture the data used in this industrial case study defined under the frame of a machine-tool that manufactures industrial tools. The presented model is based on a two-phase application. The first phase uses a neural projection model capable of determine if the data collected is informative enough. The second phase is focus on identifying a model for the face milling process based on low-order models such as Black Box ones. The whole system is capable of approximating the optimal form of the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples, is the most appropriate model to control such industrial task for the case of steel tools

    AI for Modelling the Laser Milling of Copper Components

    Get PDF
    Laser milling is a relatively new micromanufacturing technique in the production of copper and other metallic components. This study presents multidisciplinary research, which is based on unsupervised connectionist architectures in conjunction with modelling systems, on the determination of the optimal operating conditions in this industrial process. Sensors on a laser milling centre relay the data used in this industrial case study of a machine-tool that manufactures copper components for high value micro-coolers. The two-phase application of the connectionist architectures is capable of identifying a model for the laser-milling process based on low-order models such as Black Box. The final system is capable of approximating the optimal form of the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples, is the most appropriate model to control these industrial tasks

    10th International Work-Conference on Artificial Neural Networks, IWANN 2009 Workshops, Salamanca, Spain, June 10-12, 2009. Proceedings, Part II

    No full text
    This book constitutes the refereed proceedings of the 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, held in Salamanca, Spain in June 2009. The 167 revised full papers presented together with 3 invited lectures were carefully reviewed and selected from over 230 submissions. The papers are organized in thematic sections on theoretical foundations and models; learning and adaptation; self-organizing networks, methods and applications; fuzzy systems; evolutionary computation and genetic algoritms; pattern recognition; formal languages in linguistics; agents and multi-agent on intelligent systems; brain-computer interfaces (bci); multiobjetive optimization; robotics; bioinformatics; biomedical applications; ambient assisted living (aal) and ambient intelligence (ai); other applications
    corecore